Communicated 14 April 1954 by T. NAGELL

Some groups of order $p^r q^s$ with Abelian subgroups of order p^r contained in the central

By Erik Götlind

The group of order $p^r q^s$ where p and q are different prime numbers may be generated by $A_i B_j$ where A_i runs through all elements of a subgroup of order p^r and B_j all elements of a subgroup of order q^s . There are $p^r q^s A_i B_j$ and they are all different. Hence they exhaust the group $G_p r_q s$. (Here and in the following " G_n " denotes a group of order n.) This means that if under certain conditions every A_i must be permutable with every B_j and if a pair of groups, $G_p r$, $G_q s$, fulfils these conditions, there is one and only one group of order $p^r q^s$ with just these groups as subgroups, because the relations between A_i and B_j are completely determined in this case. If under these conditions one of the groups in the pair, say $G_p r$, is Abelian, $G_p r$ is contained in the central of the group $G_p r_q s$.

It has been shown that if $p > q^s$ and $p \equiv 1 \pmod{q}$ and $G_p r$ is a cyclic subgroup of $G_p r_q s$, then $G_p r$ must be contained in the central of $G_p r_q s$. This also means that there can only be as many abstract groups of a given order $p^r q^s$ with these conditions fulfilled as there are different groups of order $q^{s.1}$ In the following the case where $G_p r$ is an Abelian group generated by two elements will be considered and the theorem to be deduced is:

Theorem: If $G_p r$ is an Abelian subgroup of $G_p r_q s$ generated by two elements of different order and $p > q^s$ and $p \equiv 1 \pmod{q}$, or if $G_p r$ is an Abelian subgroup of $G_p r_q s$ generated by two elements of the same order and $p > q^s$ and $p^2 \equiv 1 \pmod{q}$, then $G_p r$ must be contained in the central of $G_p r_q s$.

The proof requires some lemmas.

Lemma 1. When $p > q^s$, there is only one subgroup of order p^r of the group $G_p r_q s$.

Suppose $G_p r$ and $G'_p r$ were two different subgroups of $G_p r_q s$. Then $G'_p r$ would contain at least some element, say A', not contained in $G_p r$ and of order p^v , where $v \neq 0$. $(A')^n A_i$ would then produce p^{r+1} different elements, when n takes the values $1, 2, \ldots, p$, and A_i runs through all elements of $G_p r$. They are all different, because if $(A')^m A_i = (A')^n A_j$ we would have $(A')^{m-n} = A_j A_i^{-1}$ and A' would be an element of $G_p r$ if $m \neq n$, contrary to the assumptions, because in this case $m - n \equiv 0 \pmod{p}$.

¹ E. GÖTLIND: Några satser om grupper av ordningen $p^r q^s$. (Some lemmas about groups of order $p^r q^s$.) Norsk Matematisk Tidsskrift, 1948, p. 11, together with a correction note to this paper: Not till uppsatsen "Några satser om grupper av ordningen $p^r q^s$ ", the same journal, 1949, p. 59.