Read 11 November 1953

On the Diophantine equation $x^2 + 8D = y^n$

By TRYGVE NAGELL

§ 1.

In a previous paper¹ I showed that the Diophantine equation

$$(1) x^2 + 8 = y^n \quad (n \ge 3)$$

has no solution in positive integers x and y when n is not a prime $\equiv \pm 1 \pmod{8}$. If n is a prime $\equiv \pm 1 \pmod{8}$, there is at most one solution in positive integers. It is, however, possible to obtain the following improvement of this result:

Theorem 1. The Diophantine equation (1), where n is an integer ≥ 3 , has no solution in positive integers x and y.

The proof will be given in $\S 5$.

In this paper we shall examine the more general equation

$$(2) x^2 + 8 D = y^n,$$

where D is a square-free, odd integer ≥ 1 , and where n is an integer ≥ 3 . We begin by proving the following lemma:

Lemma 1. The equation (2) has no solution in even integers x and y if $n \ge 4$. If n=3 and if the number of ideal classes in the quadratic field $\mathbf{K}(\sqrt{-2D})$ is not divisible by 3, the equation (2) is solvable in even integers x and y only when $D=6a^2\mp 1$, a integer; corresponding to this value of D there is the single integral solution $y=16a^2\mp 2$.

Proof. Let x, y be a solution of (2) in integers. If x is even, y is so. Then y^n is divisible by 8. Hence by (2) x is divisible by 4. Since D is odd, y^n must be divisible by exactly 8, and this implies n=3. If we put $x=4x_1$ and $y=2y_1$, we get

(3)
$$(2x_1)^2 + 2D = 2y_1^3$$
.

The ideal factors $(2x_1 + \sqrt{-2D})$ and $(2x_1 - \sqrt{-2D})$ of the left-hand side have the greatest common divisor $(2, \sqrt{-2D})$. Hence it follows from (3)

103

¹ See NAGELL [1], § 2. Figures in [] refer to the Bibliography at the end of this paper.