Read 11 November 1953

On the Diophantine equation $x^2 + 8D = y^n$

By TRYGVE NAGELL

§].

In a previous paper¹ I showed that the Diophantine equation

$$
(1) \t\t\t x^2+8=y^n \quad (n\geq 3)
$$

has no solution in positive integers x and y when n is not a prime $\equiv \pm 1 \pmod{8}$. If n is a prime $\equiv \pm 1 \pmod{8}$, there is at most one solution in positive integers. It is, however, possible to obtain the following improvement of this result:

Theorem 1. The Diophantine equation (1), where n is an integer ≥ 3 , has no *solution in positive integers x and y.*

The proof will be given in § 5.

In this paper we shall examine the more general equation

$$
(2) \hspace{3.1em} x^2+8\,D=y^n,
$$

where D is a square-free, odd integer ≥ 1 , and where n is an integer ≥ 3 . We begin by proving the following lemma:

Lemma 1. The equation (2) has no solution in even integers x and y if $n \geq 4$. If $n=3$ and if the number of ideal classes in the quadratic field $K(\sqrt{-2D})$ is *not divisible by 3, the equation* (2) *is solvable in even integers x and y only when* $D = 6 a² + 1$, *a integer; corresponding to this value of D there is the single integral solution* $y = 16 a^2 \overline{+} 2$.

Proof. Let x, y be a solution of (2) in integers. If x is even, y is so. Then $yⁿ$ is divisible by 8. Hence by (2) x is divisible by 4. Since D is odd, $yⁿ$ must be divisible by exactly 8, and this implies $n = 3$. If we put $x = 4x_1$ and $y = 2y_1$, we get

$$
(3) \qquad \qquad (2\,x_1)^2 + 2\,D = 2\,y_1^3.
$$

The ideal factors $(2x_1 + \sqrt{-2D})$ and $(2x_1 - \sqrt{-2D})$ of the left-hand side have the greatest common divisor $(2, \sqrt{-2D})$. Hence it follows from (3)

 $7 \t 103$

¹ See NAGELL [1], § 2. Figures in [] refer to the Bibliography at the end of this paper.