ARKIV FÖR MATEMATIK Band 3 nr 3

Notes on the Diophantine equation $\boldsymbol{y}^{\mathbf{2}}-k=\boldsymbol{x}^{\mathbf{3}}$

By Ove Hemer

The purpose of this article is to give some corrections and additions to my dissertation "On the Diophantine equation $y^{2}-k=x^{3}$ " (Uppsala 1952). In the following I denote that paper by H and refer to the bibliography given there as e.g. ($H,[4]$). In fact I have succeeded in solving all the equations with $0<k \leq 100$.

The problem of solving an equation $y^{2}-k=x^{3}$ is equivalent to solving a finite number of equations $(a, b, c, d)=1$, where (a, b, c, d) is a binary cubic form. To be short I name this form soluble and (u, v) a solution of the form, if there is any integer solution (u, v) of $(a, b, c, d)=1$. In the first part of H it is shown how to determine those equations and further their solubility is discussed. A soluble form may be written

$$
\begin{equation*}
F(u, v)=u^{3}+p u^{2} v+q u v^{2}+r v^{3}=(1, p, q, r) \tag{1}
\end{equation*}
$$

and corresponds to a cubic ring $R(\theta)$, where

$$
\begin{equation*}
F(\theta,-1)=\theta^{3}-p \theta^{2}+q \theta-r=0 \tag{2}
\end{equation*}
$$

If $k>0$, the form $F(u, v)$ has always a negative discriminant. Then every integer solution of (1) corresponds to a unit of the type

$$
\begin{equation*}
\varepsilon^{n}=u+v \theta \tag{3}
\end{equation*}
$$

and vice versa, where ε is the fundamental unit of the ring $R(\theta)$. Hence the decisive question is to determine all such units (3).

If $0<\varepsilon<1$, the case $n<0$ can easily be examined by H, Lemma 7, p. 25. This lemma was inserted a short time before the printing and hence it is not applied all through. Further, for want of space, the proof was too short. Hence I repeat the lemma here with a detailed proof:

Lemma 7. A soluble irreducible form can always by a unimodular substitution be written $F(u, v)=(1, p, q, r)$, where $p \leq 1$ and $r>0$. Suppose $D(F)<0$ and $0<\varepsilon<1$, where ε is the fundamental unit in the corresponding cubic ring. Then, if v_{1} and v_{2} are positive integers and if $D\left(1, p, q, r-\frac{1}{v_{1}^{3}}\right)$ and $D\left(1, p, q, r+\frac{1}{v_{2}^{3}}\right)$

