On a special class of Diophantine equations of the second degree

By Trygye Nagell

§ 1. Ambiguous ideals in real quadratic fields and Diophantine equations

Given the square-free integer $D>1$, the determination of the ambiguous ideal classes in the real quadratic field $K(\sqrt{D})$ depends essentially on the following fact:

Theorem 1. Let ε be the fundamental unit in $K(\sqrt{D})$, and let

$$
a_{1}, a_{2}, \ldots, a_{s}
$$

be all possible products of different ambiguous prime ideals in $K(\sqrt{D})$.
If $N(\varepsilon)=-1$, none of the ideals \mathfrak{a}_{i} is principal, apart from (\sqrt{D}).
If $N(\varepsilon)=+1$, exactly two of the ideals a_{i} are principal, apart from (\sqrt{D}). The product of these principal ideals is $=(2 \sqrt{\bar{D}})$ when D is odd and the norms of the ideals are even; in all other cases the product is $=(\sqrt{D})$.

See f. ex. Hilbert [1], § 75 and Hecke [2], § $45 .{ }^{1}$
This theorem may also be formulated as follows:
Theorem 2. Let D be a given square-free integer >1, and let C be any squarefree divisor of $2 D$, such that $C \neq 1$ and $\neq \pm D$. When $D \equiv 1$ (mod 4), C shall be odd.

Part 1. If the Diophantine equation

$$
\begin{equation*}
u^{2}-D v^{2}=C \tag{1}
\end{equation*}
$$

is solvable in integers u and v for $C=-1$, it is not solvable for any other value of C.
If it is not solvable for $C=\cdots 1$, it is solvable for exactly two different values of C. The product of these two values of C is $=-4 D$ when D is odd and C is even; in all other cases the product is $=-D$.
${ }^{1}$ Figures in [] refer to the Bibliography at the end of this paper.

