Read 14 October 1953

On a special class of Diophantine equations of the second degree

By TRYGVE NAGELL

§ 1. Ambiguous ideals in real quadratic fields and Diophantine equations

Given the square-free integer D > 1, the determination of the ambiguous ideal classes in the real quadratic field $K(\sqrt{D})$ depends essentially on the following fact:

Theorem 1. Let ε be the fundamental unit in $\mathbf{K}(\sqrt{D})$, and let

$$\mathfrak{a}_1, \mathfrak{a}_2, \dots, \mathfrak{a}_s$$

be all possible products of different ambiguous prime ideals in \mathbf{K} (VD).

If $N(\varepsilon) = -1$, none of the ideals α_i is principal, apart from (VD).

If $N(\varepsilon) = +1$, exactly two of the ideals a_i are principal, apart from (\sqrt{D}) . The product of these principal ideals is $= (2\sqrt{D})$ when D is odd and the norms of the ideals are even; in all other cases the product is $= (\sqrt{D})$.

See f. ex. HILBERT [1], § 75 and HECKE [2], § 45.¹ This theorem may also be formulated as follows:

Theorem 2. Let D be a given square-free integer > 1, and let C be any square-free divisor of 2D, such that $C \neq 1$ and $\neq \pm D$. When $D \equiv 1 \pmod{4}$, C shall be odd.

Part 1. If the Diophantine equation

$$u^2 - D v^2 = C$$

is solvable in integers u and v for C = -1, it is not solvable for any other value of C. If it is not solvable for C = -1, it is solvable for exactly two different values of C. The product of these two values of C is = -4 D when D is odd and C is even; in all other cases the product is = -D.

4

¹ Figures in [] refer to the Bibliography at the end of this paper.