Characterization of removable sets in strongly pseudoconvex boundaries

Guido Lupacciolu

I. Introduction

Let M be a complex-analytic manifold⁽¹⁾ of complex dimension $n \ge 2$.

Given an open domain $D \subset \subset M$, a proper closed subset K of the boundary bD of D is called *removable* in case $bD \setminus K$ is \mathcal{C}^1 -smooth and every continuous CR-function f on $bD \setminus K$ has a continuous extension F to $\overline{D} \setminus K$ which is holomorphic on D.

A general account of the subject of removable sets is given in [19], where one can also find most of the related references.

One main result in this area is the following characterization of removable sets in the two-dimensional case (see [19; II.10]):

Theorem 0. Let M be a Stein manifold of dimension two and $D \subset \subset M$ a C^2 bounded strongly pseudoconvex domain such that \overline{D} is $\mathcal{O}(M)$ -convex. Then for a proper closed subset K of bD the following two conditions are equivalent:

- (a) K is removable;
- (b) K is $\mathcal{O}(M)$ -convex.

This connection, in dimension two, between removability and $\mathcal{O}(M)$ -convexity is of considerable interest, and has been recently used by Forstnerič and Stout [6] to exhibit some new instances of polynomially convex sets in \mathbb{C}^2 .

On the other hand, Theorem 0 does not hold for general $n \ge 2$ (it being only true, for $n \ge 3$, that $(b) \Rightarrow (a)$) and a result of this kind valid for $n \ge 2$ seems to be still unknown, due perhaps to the fact that the known proof of Theorem 0 depends on a version of a theorem of Słodkowski [18; Theorem 2.1] on two-dimensional

 $^(^1)$ Throughout the paper manifolds are assumed to be connected and with countable topology.