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1. Introduction

Let ¢ be an abelian group, A, B and C subsets of . By A+ B we denote the
set of all the elements g €G having at least one representation as a sum g=a+b of
an element a€4 and an element b€B. For each g€, the number of such repre-
sentations is denoted as v,(4, B). Further, H (C) will denote the subgroup of G
consisting of all the elements g€G for which C+g=0C, thus, C+H(C)=C. If
H(C)+{0} then C is said to be periodic, otherwise, aperiodic. Finally, [C] denotes
the number of elements in C.

In this paper, we shall determine the structure of those pairs (4, B) of non-

empty finite subsets of @ for which
[A-+ B]<[A]+[B]. 1)

In view of Theorem 3.1 due to Kneser [4]; [5] it suffices to consider the case that

A+ B is aperiodic and
[4+B]=[4]+[B]-1, 2)

cf. Theorem 3.4. If (2) holds, 2<[4]< oo, 2<[B]< oo, then (Theorem 2.1) either
A+ B is in arithmetic progression or 4+ B is the union of a non-empty periodic set
(¢’ and a subset C" of some H ((")-coset. On the basis of such information on 4 + B,
one can study the structure of the pair (A4, B) itself, see section 4. The final result
is Theorem 5.1; here besides (2) it is assumed that »,(4, B)=1 has a solution ¢ in
case A+ B is periodic. Theorem 5.1 completely determines the (rather complicated)
structure of the pairs (4, B) satisfying (1), cf. the discussion at the end of section 5.
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