Regularity of a boundary having a Schwarz function

by

MAKOTO SAKAI

Tokyo Metropolitan University Tokyo, Japan

In his book [5], Davis discussed various interesting aspects concerning a Schwarz function. It is a holomorphic function S which is defined in a neighborhood of a real analytic arc and satisfies $S(\zeta) = \overline{\zeta}$ on the arc, where $\overline{\zeta}$ denotes the complex conjugate of ζ .

In this paper, we shall define a Schwarz function for a portion of the boundary of an arbitrary open set and show regularity of the portion of the boundary. More precisely, let Ω be an open subset of the unit disk *B* such that the boundary $\partial \Omega$ contains the origin 0 and let $\Gamma = (\partial \Omega) \cap B$. We call a function *S* defined on $\Omega \cup \Gamma$ a Schwarz function of $\Omega \cup \Gamma$ if

- (i) S is holomorphic in Ω ,
- (ii) S is continuous on $\Omega \cup \Gamma$,
- (iii) $S(\zeta) = \overline{\zeta}$ on Γ .

We shall give a classification of a boundary having a Schwarz function. The main theorem, Theorem 5.2, asserts that there are four types of the boundary if 0 is not an isolated boundary point of Ω : 0 is a regular, nonisolated degenerate, double or cusp point of the boundary. Namely, one of the following must occur for a small disk B_{δ} with radius $\delta > 0$ and center 0:

(1) $\Omega \cap B_{\delta}$ is simply connected and $\Gamma \cap B_{\delta}$ is a regular real analytic simple arc passing through 0.

(2a) $\Gamma \cap B_{\delta}$ determines uniquely a regular real analytic simple arc passing through 0 and $\Gamma \cap B_{\delta}$ is an infinite proper subset of the arc accumulating at 0 or the whole arc. $\Omega \cap B_{\delta}$ is equal to $B_{\delta} \setminus \Gamma$.

(2b) $\Omega \cap B_{\delta}$ consists of two simply connected components Ω_1 and Ω_2 . $(\partial \Omega_1) \cap B_{\delta}$ and $(\partial \Omega_2) \cap B_{\delta}$ are distinct regular real analytic simple arcs passing through 0. They are tangent to each other at 0.