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Introduction

A connected Riemannian manifold (M, g) is said to be isotropy irreducible if for each
point p € M the isotropy group H,, i.e. all isometries of g fixing p, acts irreducibly on
T,M via its isotropy representation. This class of manifolds is of great interest since
they have a number of geometric properties which follow immediately from the
definition. By Schur’s lemma the metric g is unique up to scaling among all metrics
with the same isometry group. By the same argument, the Ricci tensor of g must be
proportional to g, i.e. g is an Einstein metric. Furthermore, according to a theorem of
Takahashi [Tal], every eigenspace of the Laplace operator of (M, g) with eigenvalue
A%0 and of dimension k+1 gives rise to an isometric minimal immersion into S%(r) with
P=dim M /A, by using the eigenfunctions as coordinates (see Li [L] and § 6 of this paper
for further properties of these minimal immersions). By a theorem of D. Bleecker [BI],
these metrics can also be characterised as being the only metrics which are critical
points for every natural functional on the space of metrics of volume 1 on a given
manifold.

From the definition it follows easily that the isometry group of g must act
transitively on M. Hence (M, g) is also a Riemannian homogeneous space. Conversely,
we can define a connected effective homogeneous space G/H to be isotropy irreducible
if H is compact and Ady acts irreducibly on g/f. Given an isotropy irreducible
homogeneous space G/H, there exists a G-invariant metric g, unique up to scaling,
such that (M, g) is isotropy irreducible in the first sense. But if we start with a
Riemannian manifold (M, g) which is isotropy irreducible, it can give rise to several
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