ON INJECTIVE BANACH SPACES AND THE SPACES $L^{\infty}(\mu)$ FOR FINITE MEASURES μ

 \mathbf{BY}

HASKELL P. ROSENTHAL

University of California, Berkeley, Calif., U.S.A. (1)

Contents

In	troduction	205
0.	Definitions, notation, and some standard facts	208
1.	Preliminary results	210
2.	Conjugate Banach spaces isomorphic to complemented subspaces of $L^1(\mu)$, with an application to injective double conjugate spaces	
3.	Classification of the linear isomorphism types of the spaces $L^{\infty}(\mu)$ for finite measures μ	217
4.	Some linear topological invariants of injective Banach spaces and the spaces $\mathcal{C}(S)$	225
5 .	Quotient algebras and conjugate spaces of $L^\infty(\mu)$ for a finite measure μ	234
6.	Open problems	245
\mathbf{R}	eferences	247

Introduction

We are interested here in the linear topological properties of those Banach spaces associated with injective Banach spaces. We study in particular detail, the spaces $L^{\infty}(\mu)$ for finite measures μ , and obtain applications of this study to problems concerning injective Banach spaces in general.(2) (Throughout the rest of this introduction, " μ " and " ν " denote arbitrary finite measures on possibly different unspecificed measureable spaces).

For example, we classify the spaces $L^{\infty}(\mu)$ themselves up to isomorphism (linear homeomorphism) in § 3, and all their conjugate spaces $((L^{\infty}(\mu))^*, (L^{\infty}(\mu))^{**}, (L^{\infty}(\mu))^{***}, \text{ etc.})$

⁽¹⁾ This research was partially supported by NSF-GP-8964.

⁽²⁾ It is easily seen that if λ is a σ -finite measure, then there exists a finite measure μ with $L^p(\lambda)$ isometric to $L^p(\mu)$ for all $p, 1 \le p \le \infty$. Thus all of our results concerning finite measures generalize immediately to σ -finite measures.