INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS \mathbf{BY} ## CHARLES FEFFERMAN Princeton University, Princeton, N. J., U.S.A. (1) ## Contents | I. | Introduction | | | | | | | | • | • | • | • | 9 | |------|---|--|--|--|--|--|--|--|---|---|---|---|----| | II. | Air on the g-function | | | | | | | | | | | | 14 | | III. | Weakly strongly singular integrals $$. | | | | | | | | | | | | 2 | | IV. | Results on the operators T_λ | | | | | | | | | | | | 28 | | Refe | erences | | | | | | | | | | | | 3 | ## I. Introduction Suppose that f is an L^p function on the torus $T^n = S^1 \times S^1 \times ... \times S^1$. Must the partial sums of the multiple Fourier series of f converge to f in the L^p norm? For the one-dimensional case, $T = S^1$, an affirmative answer has been known for many years. More specifically, suppose that $f \in L^p(S^1)$ has the Fourier expansion $f \sim \sum_{k=-\infty}^{\infty} a_k e^{ik\theta}$, and set $f_m(\theta) = \sum_{k=-m}^{m} a_k e^{ik\theta}$. Then f_m converges to f in $L^p(S^1)$, as $m \to \infty$ —provided 1 (see [14]). A whole slew of n-dimensional analogues of this theorem suggest themselves. Here are two natural conjectures. (I) Let $f \in L^p(T^n)$ have the multiple Fourier expansion $$f(\theta_1 \dots \theta_n) = \sum_{k_1 \dots k_n = -\infty}^{\infty} a_{k_1 \dots k_n} e^{i(k_1 \theta_1 + \dots + k_n \theta_n)}.$$ For each positive integer m, set $$f_m(\theta_1 \dots \theta_n) = \sum_{\substack{|k_1| \leqslant m, |k_2| \leqslant m, \dots, |k_n| \leqslant m}} a_{k_1 \dots k_n} e^{i(k_1 \theta_1 + \dots + k_n \theta_n)}.$$ Then $f_m \rightarrow f$ in $L^p(T^n)$, as $m \rightarrow \infty$. ⁽¹⁾ This work was supported by the National Science Foundation.