Stability of embeddings for pseudoconcave surfaces and their boundaries

by

CHARLES L. EPSTEIN

and

GENNADI M. HENKIN

University of Pennsylvania Philadelphia, PA, U.S.A. Universit´ede Paris VI Paris, France

Contents

	1. Introduction	161
I.	Closedness of the set of embeddable deformations	166
	2. The dimension of $H^0(X;[dZ])$	166
	3. Weakened notions of embeddability for concave structures	172
	4. Finiteness results for projectively fillable germs	179
	5. Almost embeddability implies embeddability	181
	6. Limits of embeddable deformations	188
II.	Stability results for deformations with extensions vanishing to high	
	order along Z	202
	7. Extending sections of the normal bundle	202
	8. Deformation of the defining equations	211
	Appendix: The exact obstruction to extending sections of the nor-	
	mal bundle	217
III.	Examples	220
	9. The case $Z=\mathbf{P}^1$	220
	10. Some examples and problems	226
	References	235

1. Introduction

Let M denote a compact, strictly pseudoconvex, 3-dimensional CR-manifold. Such a structure is induced on a strictly pseudoconvex, real hypersurface in a complex surface, or as the boundary of a 2-dimensional Stein space. In the latter case we say that the CR-manifold is fillable or embeddable. It is a fundamental fact that many 3-dimensional, strongly pseudoconvex CR-manifolds cannot be realized as the boundary of any compact complex space. The CR-structure on M can be described as a subbundle $T^{0,1}M$ of the