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0. I n t r o d u c t i o n  

Let us consider a Schr5dinger operator in L2(Rd), 

-A+V,  (0.1) 

where V is a real-valued function. Lieb and Thirring [231 proved that i f 'y>max(0,  1 -  ld) ,  

then there exist universal constants LT, d satisfying(1) 

tr ( - A + V )  ~ - <~ L%d [ V~_+d/2(x) dx. 
J R  d 

(o.2) 

In the critical case d>~3 and "~=0, the bound (0.2) is known as the Cwikel Lieb- 

Rozenblum (CLR) inequality, see [8], [20], [25] and also [7], [19]. For the remaining 

case d = l  and .y= l ,  the estimate (0.2) has been verified in [27], see also [14]. On the 

other hand, it is known that (0.2) fails for 7 = 0  if d=2,  and for 0~<7< 1 if d = l .  

If VCL~+d/2(Rd), then the inequalities (0.2) are accompanied by the Weyl-type 

asymptotic formula 

lim 1 1 / / ~  cz-++cxD OL~'+d/2 tr ( -A+c~V)  ~ = l i m  (I~I2~_oLV)~. dx cl~ 
- ~ + ~  a ~ + d / 2  d •  (2~) d 

L~l'd /a ~/~+d/2, 
v _ ax, 

d 

(0.3) 

(1) Here and below we use the  not ion 2x_ := I x l - x  for the  negative pa r t  of variables, functions,  
Hermit ian  matr ices  or self-adjoint operators .  


