Acta Math., 184 (2000), 87–111 © 2000 by Institut Mittag-Leffler. All rights reserved

Sharp Lieb–Thirring inequalities in high dimensions

by

ARI LAPTEV

and

TIMO WEIDL

The Royal Institute of Technology Stockholm, Sweden The Royal Institute of Technology Stockholm, Sweden and Universität Regensburg Regensburg, Germany

0. Introduction

Let us consider a Schrödinger operator in $L^2(\mathbf{R}^d)$,

$$-\Delta + V,$$
 (0.1)

where V is a real-valued function. Lieb and Thirring [23] proved that if $\gamma > \max(0, 1 - \frac{1}{2}d)$, then there exist universal constants $L_{\gamma,d}$ satisfying⁽¹⁾

$$\operatorname{tr} \left(-\Delta + V\right)_{-}^{\gamma} \leqslant L_{\gamma,d} \int_{\mathbf{R}^{d}} V_{-}^{\gamma+d/2}(x) \, dx. \tag{0.2}$$

In the critical case $d \ge 3$ and $\gamma = 0$, the bound (0.2) is known as the Cwikel-Lieb-Rozenblum (CLR) inequality, see [8], [20], [25] and also [7], [19]. For the remaining case d=1 and $\gamma = \frac{1}{2}$, the estimate (0.2) has been verified in [27], see also [14]. On the other hand, it is known that (0.2) fails for $\gamma = 0$ if d=2, and for $0 \le \gamma < \frac{1}{2}$ if d=1.

If $V \in L^{\gamma+d/2}(\mathbf{R}^d)$, then the inequalities (0.2) are accompanied by the Weyl-type asymptotic formula

$$\lim_{\alpha \to +\infty} \frac{1}{\alpha^{\gamma+d/2}} \operatorname{tr} (-\Delta + \alpha V)_{-}^{\gamma} = \lim_{\alpha \to +\infty} \frac{1}{\alpha^{\gamma+d/2}} \iint_{\mathbf{R}^{d} \times \mathbf{R}^{d}} (|\xi|^{2} + \alpha V)_{-}^{\gamma} \frac{dx \, d\xi}{(2\pi)^{d}}$$

$$= L_{\gamma,d}^{\operatorname{cl}} \int_{\mathbf{R}^{d}} V_{-}^{\gamma+d/2} \, dx,$$

$$(0.3)$$

 $^(^{1})$ Here and below we use the notion $2x_{-}:=|x|-x$ for the negative part of variables, functions, Hermitian matrices or self-adjoint operators.