Acta Math., 181 (1998), 63–108 © 1998 by Institut Mittag-Leffler. All rights reserved

A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy

by

and

FRITZ GESZTESY

RUDI WEIKARD

University of Missouri Columbia, MO, U.S.A. University of Alabama Birmingham, AL, U.S.A.

1. Introduction

Before describing our approach in some detail, we shall give a brief account of the history of the problem of characterizing elliptic algebro-geometric solutions of completely integrable systems. This theme dates back to a 1940 paper of Ince [51] who studied what is presently called the Lamé-Ince potential

$$q(x) = -n(n+1)\wp(x+\omega_3), \quad n \in \mathbf{N}, \ x \in \mathbf{R},$$

$$(1.1)$$

in connection with the second-order ordinary differential equation

$$y''(E,x) + q(x)y(E,x) = Ey(E,x), \quad E \in \mathbf{C}.$$
 (1.2)

Here $\wp(x) = \wp(x; \omega_1, \omega_3)$ denotes the elliptic Weierstrass function with fundamental periods $2\omega_1$ and $2\omega_3$ (Im $(\omega_3/\omega_1) \neq 0$). In the special case where ω_1 is real and ω_3 is purely imaginary, the potential q(x) in (1.1) is real-valued and Ince's striking result [51], in modern spectral-theoretic terminology, yields that the spectrum of the unique self-adjoint operator associated with the differential expression $L_2 = d^2/dx^2 + q(x)$ in $L^2(\mathbf{R})$ exhibits finitely many bands (and gaps, respectively), that is,

$$\sigma(L_2) = (-\infty, E_{2n}] \cup \bigcup_{m=1}^{n} [E_{2m-1}, E_{2m-2}], \quad E_{2n} < E_{2n-1} < \dots < E_0.$$
(1.3)

What we call the Lamé–Ince potential has, in fact, a long history and many investigations of it precede Ince's work [51]. Without attempting to be complete we refer the

Based upon work supported by the US National Science Foundation under Grants DMS-9623121 and DMS-9401816.