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1. Statement of results

Consider a group G of Mobius transformations acting on the 2-sphere S2. Such a group
G also acts as isometries on the hyperbolic 3-ball B. The limit set, A(G), is the accu-
mulation set (on S2) of the orbit of the origin in B. We say the group is discrete if it is
discrete as a subgroup of PSL(2, C) (i.e., if the identity element is isolated). The ordinary
set of G, (G), is the subset of S? where G acts discontinuously, i.e., Q(G) is the set of
points z such that there exists a disk around z which hits itself only finitely often under
the action of G. If G is discrete, then Q(G)=S?\A(G). G is called a Kleinian group
if it is discrete and Q(G) is non-empty (some sources permit A=S2 in the definition of
Kleinian group, but our results are easier to state by omitting it). The limit set A(G)
has either 0, 1, 2 or infinitely many points and G is called elementary if A(G) is finite.
The Poincaré exponent (or critical exponent) of the group is

§(G)= inf{s : > exp(—s0(0, g(0))) < oo},
G

where g is the hyperbolic metric in B3. A point z€A(G) is called a conical limit point
if there is a sequence of orbit points which converges to z inside a (Euclidean) non-
tangential cone with vertex at x (such points are sometimes called radial limit points
or points of approximation). The set of such points is denoted A.(G). G is called
geometrically finite if there is a finite-sided fundamental polyhedron for G’s action on B
and geometrically infinite otherwise. A result of Beardon and Maskit [6] says that G is
geometrically finite if and only if A(G) is the union of A.(G), the rank 2 parabolic fixed
points and doubly cusped rank 1 parabolic fixed points of G. This makes it clear that
dim{A.)=dim(A) and area(A)=0 in the geometrically finite case.
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