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1. Introduction

It is conjectured that if f(X) is any irreducible integer polynomial such that f(1), f(2),...
tend to infinity and have no common factor greater than 1, then f(n) takes infinitely many
prime values. Unfortunately this has only been proved for linear polynomials, in which
case the assertion is the famous theorem of Dirichlet. One may seek to formulate a weaker
conjecture concerning irreducible binary forms f(X,Y’). Here the necessary condition is
that the values of f(m,n) for positive integers m,n are unbounded above and have no
non-trivial common factor. Again one might hope that such a form attains infinitely
many prime values. This is trivial for linear forms, as such a form takes all sufficiently
large integer values. For quadratic forms it was proved by Dirichlet, although in certain
special cases, such as f(X,Y)=X2+Y?2, the result goes back to Fermat. Dirichlet’s
result was extended by Iwaniec [14] to quadratic polynomials in two variables. Our goal



