Equivalent norms on Lipschitz-type spaces of holomorphic functions

by

KONSTANTIN M. DYAKONOV

Universidad de La Laguna
La Laguna, Tenerife, Spain
and
St. Petersburg University of Electrical Engineering
St. Petersburg, Russia

1. Introduction and results

A continuous function $\omega: [0, +\infty) \to \mathbb{R}$ with $\omega(0)=0$ will be called a majorant if $\omega(t)$ is increasing and $\omega(t)/t$ is nonincreasing for $t>0$. If, in addition, there is a constant $C(\omega)>0$ such that

$$
\int_0^\delta \frac{\omega(t)}{t} \, dt + \delta \int_\delta^\infty \frac{\omega(t)}{t^2} \, dt \leq C(\omega) \cdot \omega(\delta)
$$

whenever $0<\delta<1$, then we say that ω is a regular majorant. Given a majorant ω and a compact set $E \subseteq \mathbb{C}$, the (Lipschitz-type) space $\Lambda_\omega(E)$ consists, by definition, of the functions $f: E \to \mathbb{C}$ satisfying

$$
\|f\|_{\Lambda_\omega(E)} \triangleq \sup \left\{ \frac{|f(z_1) - f(z_2)|}{\omega(|z_1 - z_2|)} : z_1, z_2 \in E, z_1 \neq z_2 \right\} < \infty.
$$

Now let D denote the unit disk $\{|z|<1\}$, T its boundary and $\overline{D} \setminus T$. Further, let A stand for the algebra of holomorphic functions on D that are continuous up to T. We shall be concerned with the space

$$
A_\omega \triangleq A \cap \Lambda_\omega(\overline{D}),
$$

which in fact coincides with $A \cap \Lambda_\omega(T)$ (for regular majorants, this last statement follows from Lemma 4 below; for the general case, see [T]).

The purpose of this paper is to characterize the functions of class A_ω in terms of their moduli (the ω's involved are assumed to be regular majorants). To this end, we

Supported in part by Grant #R2D300 from the International Science Foundation and by a grant from Pro Mathematica (France).