Partition relations for partially ordered sets

by

STEVO TODORCEVIC

University of Colorado Boulder, Colorado, U.S.A. and University of California, U.S.A. Berkeley, California, U.S.A.

Let P be a partially ordered set. If $r < \omega$, then $[P]^r$ denotes the set of all sequences $\langle a_1, ..., a_r \rangle$ such that $a_1, ..., a_r \in P$ and $a_1 <_P ... <_P a_r$. If γ is an ordinal and if α_i , $i < \gamma$ are order types (isomorphism types of linearly ordered sets), then the symbol $P \rightarrow (\alpha_i)_{i < \gamma}^r$ means that for any partition $[P]^r = \bigcup_{i < \gamma} K_i$ there exists an $i < \gamma$ and a chain $A \subseteq P$ such that $tp A = \alpha_i$ and $[A]^r \subseteq K_i$. The negation of the partition symbol is written with \Rightarrow instead of \rightarrow . Note that if P is a linearly ordered set, then $[P]^r$ and $P \rightarrow (\alpha_i)_{i < \gamma}^r$ have the usual meanings. If $\alpha_i = \alpha$ for all $i < \gamma$, then we write $P \rightarrow (\alpha)_{\gamma}^r$ instead of $P \rightarrow (\alpha_i)_{i < \gamma}^r$.

This paper is a study of the partition symbol $P \rightarrow (\alpha_i)_{i < \gamma}^r$ for partially ordered sets P such that $P \rightarrow (\varkappa)_{\varkappa}^1$ for some infinite cardinal \varkappa . Our main result for the case $\varkappa = \omega$ is the following theorem which proves a conjecture of Galvin [10; p. 718].

THEOREM 1. Let P be a partially ordered set such that $P \rightarrow (\omega)^1_{\omega}$. Then

 $P \rightarrow (\alpha)_k^2$ for all $\alpha < \omega_1$ and $k < \omega$.

This theorem completes a rather long list of weaker results: Erdös-Rado [7], [8], Hajnal [11], Galvin [9], Prikry [21], Baumgartner-Hajnal [1] and Galvin [10]. The history of the problem is discussed in [1; pp. 193-194], [4; pp. 271-272] and [10; pp. 711-712]. The most general results previously obtained in the direction of Theorem 1 are a result of Baumgartner and Hajnal [1] who proved Theorem 1 for the case when P is a linearly ordered set, and a result of Galvin [10; p. 714] who proved Theorem 1 under the stronger hypothesis $P \rightarrow (\eta)^1_{\omega}$. The hypothesis $P \rightarrow (\omega)^1_{\omega}$ in Theorem 1 is known to be necessary since $P \rightarrow (\omega, \omega + 1)^2$ implies $P \rightarrow (\omega)^1_{\omega}$ (see [10; p. 718]).

Let us now consider a generalization of Theorem 1 to higher cardinals \varkappa . Unfortu-

¹⁻⁸⁵⁸²⁸⁸ Acta Mathematica 155. Imprimé le 28 août 1985