Acta Math., 170 (1993), 121-149

Representation theoretic rigidity in $PSL(2, \mathbf{R})$

by

and

CHRISTOPHER BISHOP

University of California Los Angeles, CA, U.S.A. TIM STEGER $(^1)$

University of Chicago Chicago, IL, U.S.A.

1. Introduction

Let G be a connected simple Lie group with trivial center, let Γ be an abstract group, and let ι_1 and ι_2 be inclusions of Γ in G. Assume throughout that each of the images $\iota_j(\Gamma)$ is a *lattice* subgroup, meaning that $\iota_j(\Gamma)$ is discrete and that the G-invariant measure on $G/\iota_j(\Gamma)$ has total finite mass. We say that ι_1 and ι_2 are *equivalent* if there is some automorphism ρ of G so that $\iota_2 = \rho \circ \iota_1$. If G is not isomorphic to PSL(2, **R**) then the Mostow rigidity theorem (see [18], [19], [16] and [24]) says that ι_1 and ι_2 are necessarily equivalent. Alternatively, this says that any isomorphism between lattice subgroups of G extends to an automorphism of the whole group. This remarkable result fails for PSL(2, **R**) (see Section 2). Nonetheless, taking $G=PSL(2, \mathbf{R})$, we have

THEOREM 1. Suppose that π_1 and π_2 are irreducible unitary representations of PSL(2, **R**), not in the discrete series. Then $\pi_1 \circ \iota_1$ and $\pi_2 \circ \iota_2$ are equivalent representations of Γ if and only if ι_1 and ι_2 are equivalent inclusions and π_1 and π_2 are equivalent representations of PSL(2, **R**).

As usual, two unitary representations of a group are called equivalent if there is a unitary equivalence of the two representation spaces which intertwines the two group actions. The situation is entirely different for discrete series representations, as explained in Section 8. Theorem 1 for $\iota_1 \sim \iota_2$ was proven in [6].

The central step in the proof of Theorem 1 is a certain analytic criterion for the equivalence of ι_1 and ι_2 . Let $PSL(2, \mathbf{R})$ act on the upper half plane $\mathbf{H} = \{Im(z)>0\}$ via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) = \frac{az+b}{cz+d},$$

^{(&}lt;sup>1</sup>)Both authors are partially supported by the NSF