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1. Introduction

Let G be a connected simple Lie group with trivial center, let I’ be an abstract group, and
let ¢; and ¢2 be inclusions of " in G. Assume throughout that each of the images ¢;(I) is
a lattice subgroup, meaning that ¢;(I') is discrete and that the G-invariant measure
on G/i;(T') has total finite mass. We say that ¢; and ¢y are equivalent if there is some
automorphism g of G so that t3=got;. If G is not isomorphic to PSL(2,R) then the
Mostow rigidity theorem (see [18], [19], [16] and [24]) says that ¢; and ¢ are necessarily
equivalent. Alternatively, this says that any isomorphism between lattice subgroups
of G extends to an automorphism of the whole group. This remarkable result fails
for PSL(2,R) (see Section 2). Nonetheless, taking G=PSL(2,R), we have

THEOREM 1. Suppose that m; and o are irreducible unitary representations of
PSL(2,R), not in the discrete series. Then myoty and waots are equivalent representa-
tions of I' if and only if 1 and 12 are equivalent inclusions and m; and mo are equivalent
representations of PSL(2,R).

As usual, two unitary representations of a group are called equivalent if there is
a unitary equivalence of the two representation spaces which intertwines the two group
actions. The situation is entirely different for discrete series representations, as explained
in Section 8. Theorem 1 for ¢y ~¢2 was proven in [6].

The central step in the proof of Theorem 1 is a certain analytic criterion for the
equivalence of 1y and ¢,. Let PSL{2,R) act on the upper half plane H={Im(2)>0} via

(a b (z)_az+b
c d T ez+d’
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