THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC FORMS (I).

Ву

E. S. BARNES and H. P. F. SWINNERTON-DYER

of Trinity College, CAMBRIDGE.

Table of Contents.

	•	rage
1.	Definitions and notations	259
2 .	Historical survey. The Euclidean algorithm	. 261
3.	Rational forms and their automorphs. Theorem A, B	. 262
4.	Transformation of the plane modulo 1. Theorems C, C', D	. 265
5.	General theorems on the minima of rational forms. Theorems E, F, G.	. 269
6.	An arithmetical result. Theorems H, J	. 271
7.	Applications of Theorems H and J. Theorems K, 1, 2, 3	. 275
8.	Normal technique for obtaining minima. Theorems 4, 5, 6	. 282
9.	A class of forms with unattained first minimum. Theorem 7	. 291
10.	Minima of some special forms. Theorems 8, 9, 10	. 299
11.	The form $f_{61}(x, y) = x^2 + xy - 15y^2$. Theorem 11	. 307
12 .	Table of results. Proof that $k(\sqrt{97})$ is not Euclidean. Theorem 12	. 314
Bib	liography	322

1. Let $f(x, y) = ax^2 + bxy + cy^2$ be an indefinite binary quadratic form with real coefficients and discriminant $D = b^2 - 4ac > 0$. For any real numbers x_0 , y_0 we define $M(f; x_0, y_0)$ to be the lower bound of $|f(x + x_0, y + y_0)|$ taken over all integer sets x, y. It is clear that if

$$x_0' \equiv x_0, \ y_0' \equiv y_0 \pmod{1} \tag{1.1}$$

then

$$M(f; x'_0, y'_0) = M(f; x_0, y_0).$$
 (1.2)