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1. Let f(z,y) =ax®+bzy + cy® be an indefinite binary quadratic form with
real coefficients and discriminant D = b2 —4ac¢>0. For any real numbers z,, y, we
define M (f; z,, 4,) to be the lower bound of |f(z + z,, ¥y + y,)| taken over all in-
teger sets z, y. It is clear that if

=@, Yo=1% (mod 1) (L.1)
then

M (f; x5, y0) = M (f; @0, %o)- (1.2)



