FOURIER ANALYSIS OF DISTRIBUTION FUNCTIONS. A MATHEMATICAL STUDY OF THE LAPLACE-GAUSSIAN LAW. By ## CARL-GUSTAV ESSEEN in UPPSALA. | Contents. | | |---|----------------------| | Introduction | Page
3 | | PART I. | | | Distribution Functions of One Variable. | | | Chap. I. Functions of Bounded Variation and Their Fourier-Stieltjes Transforms | 8 | | Functions of bounded variation Functions of class (T) Minimum extrapolation in (T) A uniqueness theorem in (T₂ + T₃) Distribution functions and their characteristic functions A uniqueness theorem On the approach towards 1 of the modulus of a characteristic function | 13
19
21
22 | | Chap. II. Estimation of the Difference Between Two Distribution Functions by the Behaviour of Their Characteristic Functions in an Interval About the Zero Point | 30 | | 1. On $\int_{-\infty}^{\infty} F(x) - G(x) dx$ | 30
31 | | Chap. III. Random Variables. Improvement of the Liapounoff Remainder Term | 39 | | Random variables | 40 |