FOURIER ANALYSIS OF DISTRIBUTION FUNCTIONS. A MATHEMATICAL STUDY OF THE LAPLACE-GAUSSIAN LAW.

By

CARL-GUSTAV ESSEEN

in UPPSALA.

Contents.	
Introduction	Page 3
PART I.	
Distribution Functions of One Variable.	
Chap. I. Functions of Bounded Variation and Their Fourier-Stieltjes Transforms	8
 Functions of bounded variation Functions of class (T) Minimum extrapolation in (T) A uniqueness theorem in (T₂ + T₃) Distribution functions and their characteristic functions A uniqueness theorem On the approach towards 1 of the modulus of a characteristic function 	13 19 21 22
Chap. II. Estimation of the Difference Between Two Distribution Functions by the Behaviour of Their Characteristic Functions in an Interval About the Zero Point	30
1. On $\int_{-\infty}^{\infty} F(x) - G(x) dx$	30 31
Chap. III. Random Variables. Improvement of the Liapounoff Remainder Term	39
 Random variables	40