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The classical theory of H? spaces could be considered ‘as a chapter of complex function

theory¥alth0ugh‘a fundamental one, with many intimate connections to Fourier analy-

sis. (1) From our present-day perspective we can see that its heavy dependence on such

special tools as Blaschke products, conformal mapi)in'gs, etc. was not an insurmountable

obstacle barring its extehsion in several directions. Thus the more reeent n-dimensional

theory, (begfm in [24], but with many roots in earlier Work) succeeded in some measure

() See Zygmund [28], Chapter III in particular.
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