Forced vibrations of superquadratic Hamiltonian systems

by

A. BAHRI and H. BERESTYCKI⁽¹⁾

University of Chicago Chicago, IL, USA Université Pierre et Marie Curie Paris Cedex, France

1. Introduction and main result

This paper is concerned with the existence of T-periodic solutions $(T \in \mathbf{R}, T>0)$ of the following Hamiltonian system

$$\dot{z} = gH'(z) + f(t). \tag{1.1}$$

Here,

$$g = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}$$

is the standard skewsymmetric matrix, z=z(t)=(p,q): $\mathbf{R}\to\mathbf{R}^{2N}$, $\dot{z}=dz/dt$, $H:\mathbf{R}^{2N}\to\mathbf{R}$ is a given Hamiltonian and $f:\mathbf{R}\to\mathbf{R}^{2N}$ is a given function which is assumed to be *T*periodic. The function f(t) represents a forcing term and thus periodic solutions of (1.1) are called *forced vibrations* of the system. Here, *H* will be required to satisfy the following hypotheses.

(H1)
$$H \in C^{2}(\mathbb{R}^{2N}, \mathbb{R})$$

(H2) $0 < H(z) \le \theta H'(z) \cdot z$, $\forall z \in \mathbb{R}^{2N}$, $|z| \ge R$, $0 < \theta <_{\frac{1}{2}}$
(H3) $a|z|^{p+1} - b \le H(z) \le a'|z|^{q+1} + b'$ with $1 ,$

where $a, a'>0, b, b'\geq 0$ and R>0 are constants. $H'(z) \cdot z$ denotes the scalar product in \mathbb{R}^{2N} . Condition (H2) is a usual way to express that the Hamiltonian is superquadratic

^{(&}lt;sup>1</sup>) The work of the second author has been supported in part by NSF Grant MCS-8104242.

¹⁰⁻⁸⁴⁸²⁸⁹ Acta Mathematica 152. Imprimé le 29 mai 1984