VECTOR FIELDS WITH FINITE SINGULARITIES

BY

M. F. ATIYAH and J. L. DUPONT
Institute for Advanced Study, Princeton, N.J. and University of Aarhus, Denmark

I. Introduction

In this paper we give some generalizations of the famous theorem of H. Hopf which states that the number of singularities of a tangent vector field on a compact smooth manifold is equal to the Euler characteristic. Instead of a single vector field we consider r vector fields u_{1}, \ldots, u_{r} and we are interested in their "singularities", that is, the set Σ of points on the manifold at which they become linearly dependent. In general Σ will have dimension $r-1$, it is a cycle $\left({ }^{1}\right)$ and its homology class is the $(n-r+1)$ th StiefelWhitney class of the manifold. This is the standard primary obstruction theory and it provides one way of generalizing the classical Hopf Theorem. However, this theory says nothing about Σ if $\operatorname{dim} \Sigma<r-1$. In this paper following \mathbf{E}. Thomas [20] we shall generalize the Hopf theorem by considering the other extreme case in which Σ is finite, so that $\operatorname{dim} \Sigma=0$. General homotopy theory tells us that we are now involved in higher order obstruction theory and that the situation is much more complicated, as we shall now explain.

For each point $A \in \Sigma$ we have a local obstruction $\left({ }^{2}\right)$

$$
O_{A}\left(u_{1}, \ldots, u_{r}\right) \in \pi_{n-1}\left(V_{n, r}\right)
$$

where $\nabla_{n, r}=S O(n) / S O(n-r)$ is the Stiefel manifold of orthogonal r-frames in \mathbf{R}^{n}. In local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ with origin A, O_{A} is just the homotopy class of the map of a small sphere $\Sigma x_{i}^{2}=\varepsilon$ into $\left({ }^{3}\right) W_{n, r}=G L(n, \mathbf{R}) / G L(n-r, \mathbf{R})$ given by $x \mapsto u_{1}(x), \ldots, u_{r}(x)$. The vanishing of \mathcal{O}_{A} is the necessary and sufficient condition that we can deform u_{1}, \ldots, u_{r}
(1) With integer or mod 2 coefficients depending on the parity of r.
$\left.{ }^{(2}\right)$ Thomas calls O_{A} the index at A. Since our methods involve using the index theory of elliptic operators we prefer a different terminology.
$\left.{ }^{(3}\right)$ As is well-known $V_{n, r} \rightarrow W_{n, r}$ is a homotopy equivalence (equivalently every r-frame can be naturally orthogonalized).
1-722908. Aeta mathematica 128. Imprimé le 20 Décembre 1971.

