A NOTE ON THE CAPILLARY PROBLEM

BY

ROBERT FINN

Stanford University, Stanford, CA 94305, USA

The purpose of this note is to extend the result of Theorem 3 in the preceding paper [2] to a configuration not amenable to the methods of that reference.

§ 1

Consider an open set \mathcal{N} in Euclidean *n*-space, bounded in part by a surface Σ of class $C^{(2)}$ whose mean curvature H^{Σ} does not change sign; the sign of H^{Σ} is chosen to be positive when the curvature vector points into \mathcal{N} . As in [2], we use the symbols Σ and \mathcal{N} to denote also the area and volume of these sets.

Let u(x) be a solution in \mathcal{H} of

$$\operatorname{div}\left(\frac{1}{W}\nabla u\right) = nH(\mathbf{x}), \qquad W^2 = 1 + |\nabla u|^2, \tag{1}$$

where $H(\mathbf{x})$ is prescribed in \mathcal{H} , and set

$$\mathbf{T}u = \frac{1}{W} \nabla u \tag{2}$$

in \mathcal{N} . Denote by \mathbf{v} the exterior directed unit normal on Σ . We observe first that if $H(\mathbf{x})$ is bounded on one side, then for any open subset $\Sigma^* \subset \Sigma$, the quantity $\int_{\Sigma^*} \mathbf{T} u \cdot \mathbf{v} d\sigma$ is uniquely defined as a limit of integrals over surfaces converging in any uniform way to Σ^* from within \mathcal{N} . To see this, it suffices to suppose H>0 and to show the result when Σ^* is the part of Σ lying interior to a (small) sphere S centered on Σ , so that Σ^* and a part $S^* \subset S$ together bound $\mathcal{N}^* \subset \mathcal{N}$. Integrating (1) by parts in the subregion cut off by an approximating surface Γ^* , and passing to the limit as $\Gamma^* \to \Sigma^*$, we find

$$\lim_{\Gamma^* \to \Sigma^*} \int_{\Gamma^*} \mathbf{T} u \cdot \mathbf{v} \, d\sigma = \int_{N^*} H(\mathbf{x}) \, d\mathbf{x} - \int_{S^*} \mathbf{T} u \cdot \mathbf{v} \, d\sigma.$$

This work was supported in part by AF contract F44620-71-C-0031 and NSF grant GP 16115 at Stanford University.