POISSON FORMULA AND COMPOUND DIFFUSION
ASSOCIATED TO AN OVERDETERMINED ELLIPTIC SYSTEM ON
THE SIEGEL HALFPLANE OF RANK TWO

BY
A. KORÁNYI AND P. MALLIAVIN
Yeshiva University, New York, USA
Université de Paris VI, France

Table of contents

I. Preliminaries
1.1. Definitions and notations 187
1.2. Recall of some results 189
1.3. Some numerical estimates 191

II. The Compound Process $z_0(t)$
2.1. Construction of $z_0(t)$ 193
2.2. Basic properties of $z_0(t)$ 195

III. Asymptotic Behaviour of the Sample Paths
3.1. Behaviour of $y_1(z_0(t))$ and $x_j(z_0(t))$ 197
3.2. Estimate of T_j 200
3.3. Behaviour of $y(z_0(t))$ 199
3.4. Behaviour of $y(z_0(t))$ 200

IV. The Poisson Representation
4.1. Some versions of Fatou’s theorem 205
4.2. The main result 207

Introduction
Let $z = (z_1, z_2, z_3) \in \mathbb{C}^3$; we write $z_j = x_j + iy_j$ ($1 \leq j \leq 3$); we also use polar coordinates (q, θ) in the (y_2, y_3)-plane when convenient. $H = \{z | y_1 - q > 0\}$ is a tube domain over a circular cone; by a linear change of coordinates it is equivalent to the Siegel upper halfplane

(1) Partially supported by NSF grant GP 28448.

13 - 752904 Acta mathematica 134. Imprimé le 1 Octobre 1975