THE TOPOLOGY OF SPACES OF RATIONAL FUNCTIONS

BY

GRAEME SEGAL

Oxford, England

§1. Introduction

A rational function f of the form

$$f(z) = \frac{p(z)}{q(z)} = \frac{z^n + a_1 z^{n-1} + \dots + a_n}{z^n + b_1 z^{n-1} + \dots + b_n},$$
(1)

where a_i and b_i are complex numbers, defines a continuous map of degree n from the Riemann sphere $S^2 = \mathbb{C} \cup \infty$ to itself. If the coefficients $(a_1, ..., a_n; b_1, ..., b_n)$ vary continuously in \mathbb{C}^{2n} the map f varies continuously providing the polynomials p and q have no root in common; but the topological degree of the map f jumps when a root of p moves into coincidence with a root of q.

Let F_n^* denote the open set of \mathbb{C}^{2n} consisting of pairs of monic polynomials (p, q) of degree *n* with no common root. F_n^* is the complement of an algebraic hypersurface, the "resultant locus", in \mathbb{C}^{2n} . On the other hand it can be identified with a subspace of the space M_n^* of maps $S^2 \to S^2$ which take ∞ to 1 and have degree *n*. In this paper I shall prove that when *n* is large the 2*n*-dimensional complex variety F_n^* is a good approximation to the homotopy type of the space M_n^* , or, more precisely

PROPOSITION (1.1). The inclusion $F_n^* \to M_n^*$ is a homotopy equivalence up to dimension n.

Equivalently one can consider the space F_n of rational functions of the form

$$\frac{a_0 z^n + \ldots + a_n}{b_0 z^n + \ldots + b_n},$$

where again the numerator and denominator have no common factor, and a_0 and b_0 are not both zero. This space is the complement of a hypersurface in \mathbb{P}^{2n+1} . It can be regarded as a subspace of the space M_n of all maps $S^2 \rightarrow S^2$ of degree *n*. Proposition (1.1) implies at once