ALGEBRAS OF BOUNDED ANALYTIC FUNCTIONS ON RIEMANN SURFACES

BY

H. L. ROYDEN

Stanford University, Stanford, Calif., U.S.A.(1)

Let (W, Γ) be a bordered Riemann surface. We say that (W, Γ) satisfies the *AB*maximum principle if each bounded analytic function on $W \cup \Gamma$ assumes its maximum on Γ . If *W* has genus zero, then *W* is conformally equivalent to a plane domain whose boundary consists of the image of Γ and a totally disconnected perfect set *E* which has the property that it is "removable" for every bounded analytic function, i.e. every function bounded and analytic in $U \sim E$ for some neighborhood *U* of *E* can be extended to be analytic in *U*. A similar situation occurs when *W* has finite genus, but when *W* has infinite genus we cannot represent it as the complement of a set on a compact surface, and so the question arises of whether we can have some generalization of this notion of "removability".

Myrberg [4] and Selberg [6] have shown that for certain twosheeted covering surfaces of the disc each bounded analytic function on the surface is obtained by lifting a bounded analytic function from the disc to the surface, and Heins [2] has shown that, if W has a single end and that a parabolic end, then there is a mapping φ of that end into a disc so that every bounded analytic function on the end is of the form $f \circ \varphi$ where f is analytic on the disc. In the present paper we generalize these results by establishing Theorem 3 which states that, if (W, Γ) satisfies the AB-maximum principle, then there is an analytic mapping φ of $W \cup \Gamma$ into a compact Riemann surface such that each bounded analytic function on $W \cup \Gamma$ is of the form $f \circ \varphi$ where f is an analytic function in a neighborhood of the closure of $\varphi[W \cup \Gamma]$.

The proof of this theorem relies on the application of techniques from the theory of function algebras to the algebra of bounded analytic functions on $W \cup \Gamma$. We begin in Section 1 by showing that, if we have any algebra of analytic functions on a Riemann

⁽¹⁾ This research was sponsored by the U.S. Army Research Office (Durham) under Project No. 1323M.

⁸⁻⁶⁵²⁹³² Acta mathematica 114. Imprimé le 11 août 1965.