On polyharmonic continuation by reflection formulas

Lars Nystedt

1. Introduction and summary*

Let Ω be an open connected set in \mathbb{R}^n , which is contained in the half space $\mathbb{R}^n_+ = \{x: x_1 \ge 0\}$, and let an open connected subset ω of the boundary of Ω be situated in the hyperplane $x_1=0$. Then $\Omega \cup \omega$ is open in \mathbb{R}^n_+ . A *p*-harmonic function in Ω is a 2*p* times differentiable solution of the equation

$$\Delta^p u = 0, \quad u \in C^{2p}(\Omega), \tag{1.1}$$

where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator. We denote the set of all such functions by $H^p(\Omega)$. It will be seen that if $u \in H^p(\Omega)$, u is in fact analytic in Ω . We shall consider functions $u \in H^p(\Omega)$ which also satisfy a set of p boundary conditions

$$\lim_{x_1 \to +0} q_i(D_1) u(x_1, x') = 0, \ (0, x') \in \omega, \quad i = 1, ..., p,$$
(1.2)

where $q_i(D_1)$ are linearly independent polynomials in $D_1 = \frac{\partial}{\partial x_1}$, with constant coefficients and x' denotes $(x_2, ..., x_n)$. In (1.2) we do not suppose x' to be fixed as $x_1 \rightarrow +0$. We shall also use the notation $q_i(D_1)u(x) = o(1)$ as $x_1 \rightarrow +0$. It will be shown that these functions can be continued as polyharmonic functions across ω into the half space $\mathbb{R}^n_{-} = \{x: x_1 < 0\}$. Very general theorems of this type have been given by Hörmander in [7], where he considers solutions of general elliptic and hypoelliptic differential equations with constant coefficients.

^{*} The main part of this work constituted a PH.D. thesis accepted at Stockholm University 1973.