Endomorphisms of finetely generated projective modules over a commutative ring

GERT ALMKVIST*

University of California, Berkeley, U.S.A. and University of Lund, Sweden

Introduction

The origin of this paper is a misprint (?) in Bourbaki ([4], p. 156, Exercise 13 d). There it is stated that if f is a 2×2 -matrix with entries in a commutative ring and $f^2 = 0$ then $(\operatorname{Tr} f)^4 = 0$ and 4 is the smallest integer with this property. Using the Cayley-Hamilton theorem we get $f^2 - af + b1 = 0$ where $a = \operatorname{Tr} f$ and $b = \det f$. Noting that $f^2 = 0$ and taking traces we get $a \cdot \operatorname{Tr} f = a^2 = 2b$. Multiplying the first equation by f gives bf = 0 which implies $b \cdot \operatorname{Tr} f = ba = 0$. Hence $a^3 = 2ab = 0$ so 3 and not 4 is the smallest integer above. Experimenting with small m and n one soon makes the conjecture: If f is an $n \times n$ -matrix with $f^{m+1} = 0$ then $(\operatorname{Tr} f)^{mn+1} = 0$. This is proved in a somewhat more general setting in 1.7 using exterior algebra.

In Section 1 the characteristic polynomial $\lambda_t(f)$ is defined for an endomorphism $f: P \to P$ where P is a finitely generated projective A-module (A is a commutative ring with 1). If P is free then $\lambda_t(f) = \det(1 + tf)$. The exponential trace formula (in case A contains **Q**)

$$\lambda_i(f) = \exp\left(-\sum_{1}^{\infty} \frac{\operatorname{Tr}(f^i)}{i} (-t)^i\right)$$

connects $\lambda_i(f)$ with the traces of the powers of f.

Various computations of $\lambda_t(f)$ are made in Section 2. By the isomorphism $\operatorname{End}_A(P) \to P^* \otimes_A P$ where $P^* = \operatorname{Hom}_A(P, A)$ every $f: P \to P$ corresponds to a tensor $\sum_i x_i^* \otimes x_i$ with $x_i^* \in P^*$, $x_i \in P$. Let M(f) be the matrix with entries $a_{ij} = \langle x_i^*, x_j \rangle$. Then $\lambda_t(f) = \det(1 + tM(f))$. Even the computation of $\lambda_t(1_P)$

^{*} This research was partly supported by the Swedish Natural Science Foundation.