Interval estimates

V. Nestoridis

§ 1. Introduction

In this paper we prove that there exists an absolute constant l>0 such that, for every univalent H^1 function f in the open unit disk D and every $z_0 \in D$, there are $\vartheta \in \mathbf{R}$ and ε , $l(1-|z_0|) \leq \varepsilon \leq \pi$, such that

$$f(z_0) = \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} f(e^{i\vartheta} e^{it}) dt.$$

Let f be a holomorphic function in the open unit disk D which belongs to the Hardy class $H^1([4])$. According to [1] and [2], every value $f(z_0)$, $|z_0| < 1$, is of the form

$$f(z_0) = \frac{1}{|I|} \int_I f(e^{i\vartheta}) d\vartheta,$$

where I is an interval on the unit circle with length |I|, $0 < |I| \le 2\pi$. A sketch of the proof is given in Prop. 1, § 2 below. The proof does not provide information on the size or the location of the interval I. Extensions of the previous result in [5, 6] are related to BMO, measures and holomorphic mappings in several variables; still they do not contain quantitative information on the size of I. Some preliminary quantitative results concerning univalent functions can be found in [7] and [8]. Their proof makes use of the classical distortion theorems and especially of the 1/4-Koebe theorem.

The purpose of the present paper is to furnish a brief and complete presentation of the above quantitative results on univalent functions; the general H^1 case is, as far as I know, still open.

The main result, thus, states that if f is H^1 and univalent then $|I| \ge 2l(1-|z_0|)$, where l>0 is an absolute constant independent of f and z_0 . In the particular case where $f(z) = \log(1-z)$, the length |I| is exactly of the order of $(1-|z_0|)$; however, I do not know the best value of the constant l.