On spaces of Triebel—Lizorkin type

Jaak Peetre

0. Introduction

In this note we study certain spaces of distributions $F_p^{sq} = F_p^{sq}(\mathbf{R}^n)$ where s real, 0 < p, $q \le \infty$. They are intimately related to certain spaces studied by Triebel [10] and Lizorkin [5] (cf. also [6]) when 1 < p, $q \le \infty$. Our main result is a certain equivalence theorem (see Sec. 3) which says that the spaces do not depend on the special sequence of testfunctions $\{\varphi_v\}_{v \in \mathbf{Z}}$ entering in their definition. This extends Triebel's corresponding result. But we have to give an entirely new proof, relying on two deep results by Fefferman & Stein: 1° their real variable characterization of the Hardy classes $H_p[1]$, 2° their sequence valued version of the Hardy & Littlewood maximal theorem [2]. (Incidentally it follows from [1] that $F_p^{02} = H_p$ if $0 while as <math>F_{\infty}^{02} = B$. M. O.!) As an application we prove (see Sec. 5) a multiplier theorem of the Mikhlin type, extending the one by Triebel and Lizorkin. We also give (see Sec. 6) an application to approximation theory related to a theorem of Freud's [3]. Finally we briefly indicate (see Sec. 7) how the result might be extended to the case of a Riemannian manifold.

1. Definitions

By L_p where 0 we denote the space of measurable functions <math>f = f(x) $(x \in \mathbb{R}^n)$ such that

$$||f||_{L_p} = \left(\int |f(x)|^p dx\right)^{1/p} < \infty.$$

By l^q where $0 < q \le \infty$ we denote the space of sequences $t = \{t_v\}_{v \in Z}$ such that

$$\|\mathbf{t}\|_{l^q} = \left(\sum_{\mathbf{v}\in\mathbf{Z}} |t_{\mathbf{v}}|^q\right)^{1/q} < \infty.$$

We consider also spaces of sequence valued measurable functions $L_p(l^q)$ and $l^q(L_p)$, defined in the obvious way. If $1 \le p$, $q \le \infty$ these are all Banach spaces, in the general case only quasi-Banach space.