The range of vector-valued analytic functions, II J. Globevnik*

The present paper is a continuation of [2]. We keep the notation of [2]. We write $I = \{t \in \mathbb{R} : 0 \le t \le 1\}$.

Theorem. Let F be a pathwise connected set in a separable complex Banach space X and let $O \subset X$ be an open set containing F. There exists a continuous function $f: \overline{\Delta} - \{1\} \rightarrow X$, analytic on Δ and such that

(i) $f(\overline{\Delta} - \{1\}) \subset O$

(ii) the cluster set of f at 1 is \overline{F} .

The proof of this theorem is almost identical with the proof of Theorem in [2] once we have proved the following lemma which enables to pass from balanced sets to arbitrary pathwise connected sets.

Lemma. Let $f: I \to X$ be a path in a complex Banach space X satisfying f(0)=0. Let $\varepsilon > 0$ and 0 < r < 1. Suppose that E is a closed subset of the boundary of Δ of linear measure 0 which does not contain a point z_0 , $|z_0|=1$. Denote $D=\overline{\Delta} \cap K(r, z_0)$. There exists a continuous function $\Phi: \overline{\Delta} \to X$, analytic on Δ and having the following properties

- (a) $\Phi(\bar{A}) \subset f(I) + B_{\varepsilon}(X)$
- (b) $\|\Phi(z)\| < \varepsilon$ $(z \in \overline{\Delta} D)$
- (c) $||f(1) \Phi(z_0)|| < \varepsilon$
- (d) $\Phi(z) = 0$ ($z \in E$).

Proof. By the Mergelyan theorem for vector-valued functions [1] there exists a polynomial $P: C \to X$ such that $|| f(z) - P(z) || < \varepsilon/4$ $(z \in I)$. Putting Q(z) = P(z) - P(0)it is easy to see that there exists a neighbourhood U of I such that $Q(U) \subset f(I) +$ $+B_{\varepsilon}(X)$. Let $V \subset U$ be an open neighbourhood of $I - \{1\}$, containing the point 1 in its boundary and bounded by a Jordan curve contained in U. By the Riemann mapping theorem there exists a one-to-one analytic map φ from Δ onto V which [4, p. 282] has an extension $\overline{\varphi}$ which is a homeomorphism from \overline{A} onto \overline{V} . Composing

^{*} This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.