Local surjectivity in C^{∞} for a class of pseudo-differential operators

Paul Godin*

Let X be a C^{∞} paracompact *n*-dimensional manifold and P a properly supported pseudo-differential operator on X, having a principal symbol p homogeneous of degree m. P is said to be locally solvable at $x_0 \in X$ if there is a neighbourhood V of x_0 such that for all $f \in C^{\infty}(X)$, there exists $u \in \mathscr{D}'(X)$ satisfying Pu = f in V. P is said to be of principal type if for all $(x, \xi) \in T^*X \setminus 0$, one has $\partial p/\partial \xi \neq 0$. For operators of principal type, Beals and Fefferman [1] proved that the so-called condition (\mathscr{P}) is sufficient for local solvability. On the other hand, Egorov [1] proved local solvability for a class of pseudo-differential operators of principal type which need not satisfy condition (\mathscr{P}). Egorov's result is the following. Let U be an open set of X and suppose that each point of $p^{-1}(0)$ above U has an open conic neighbourhood Γ in $T^*X \setminus 0$ in which one of the following conditions is fulfilled:

(a) There exists in Γ a C^{∞} function μ , homogeneous of degree (m-1), such that $i^{-1}\{\bar{p}, p\} \leq 2 \operatorname{Re}(\mu p)$ in Γ (here $\{\bar{p}, p\}$ is the Poisson bracket of \bar{p} and p and its expression in local coordinates is

$$\sum_{1}^{n} \left(\frac{\partial \bar{p}}{\partial \xi_{j}} \frac{\partial p}{\partial x_{j}} - \frac{\partial \bar{p}}{\partial x_{j}} \frac{\partial p}{\partial \xi_{j}} \right).$$

(b) For some $z \in \mathbb{C} \setminus \{0\}$, $(\partial/\partial \xi) \operatorname{Re}(zp) \neq 0$ in Γ and $\operatorname{Im}(zp) \ge 0$ in Γ .

(c) For some $z \in \mathbb{C} \setminus \{0\}$, $(\partial/\partial \xi) \operatorname{Re}(zp) \neq 0$ in Γ and there exists a conic submanifold Σ of Γ , of codimension 1, such that each null bicharacteristic strip of Re (zp), emanating from a point of Γ , intersects Σ exactly at one point and transversally. Furthermore one assumes that for each null bicharacteristic strip γ of Re (zp) in Γ , one has Im $(zp) \geq 0$ on γ^- and Im $(zp) \leq 0$ on γ^+ . Here γ^- and γ^+ are defined as follows: Let ϱ_{γ} be the intersection point of $\gamma \cap \Gamma$ and Σ ; if s is the parameter of $\gamma \cap \Gamma$ occuring in the Hamilton—Jacobi equations dx/ds =

^{*} Supported partly by a grant from the F. N. R. S. (Belgium) and partly by a grant from the Swedish Institute.