Some estimates for spectral functions connected with formally hypoelliptic differential operators

NILS NILSSON

University of Lund, Lund, Sweden

1. Introduction

We are going to consider a differential operator $a(x, D) = \sum a_{\alpha}(x)D^{\alpha}$ in and open connected subset S of \mathbb{R}^n , where D is the differentiation symbol $(2\pi i)^{-1}(\partial/\partial x_1, \ldots, \partial/\partial x_n)$ and the summation is made over a finite number of multi-orders $\alpha = (\alpha_1, \ldots, \alpha_n)$. We assume that the operator a(x, D) is formally hypoelliptic (FHE) of type P in S, i.e. that the (complex-valued) coefficients a_{α} are in $C^{\infty}(S)$ and that for every $x \in S$ the polynomial (in $\xi \in \mathbb{R}^n)|a(x, \xi) =$ $\sum a_{\alpha}(x)\xi^{\alpha}$ is equally strong as the hypoelliptic polynomial P in the sense of Hörmander [4]. We also require that the type polynomial P is not a constant. Moreover, we suppose that a(x, D) is formally self-adjoint in S, i.e. that we have $\sum a_{\alpha}(x)D^{\alpha} = \sum D^{\alpha}\overline{a_{\alpha}(x)}$ there. Then with no loss of generality we may assume that Re $a(x, \xi) \to +\infty$ as $|\xi| \to \infty$, $\xi \in \mathbb{R}^n$, for every $x \in S$ (Lemma 3).

Suppose now that A is a self-adjoint realization of a(x, D) in the Hilbert space $L^2(S)$ (note that A need not be bounded from below), and let $A = \int_{-\infty}^{\infty} \lambda dE_{\lambda}$ be its spectral resolution, the E_{λ} being orthogonal projections in $L^2(S)$, increasing with λ . We shall then prove (Theorem 1) that for every real number λ the projection E_{λ} is given by a kernel e_{λ} in $C^{\infty}(S \times S)$ (e_{λ} is called the spectral function of A) and that, when $\lambda \to -\infty$, e_{λ} tends exponentially to zero together with its derivatives (with respect to the variables in $S \times S$), uniformly on compact subsets of $S \times S$.

Further, for an arbitrary *n*-order α we shall investigate the behaviour as $\lambda \to +\infty$ of the derivative $e_{\lambda}^{(\alpha,\alpha)}(x,y) = D_x^{\alpha}(-D_y)^{\alpha}e_{\lambda}(x,y)$ when $x = y \in S$. We shall then compare $e_{\lambda}^{(\alpha,\alpha)}(x,x)$ to the function

$$e^{(lpha, lpha)}_{x, \lambda}(x, y) = \int\limits_{\mathrm{Re} \ a(x, \xi) \leq \lambda} \xi^{2lpha} \exp \left(2\pi i \langle x - y, \xi
angle\right) d\xi$$