Some estimates for spectral functions connected with formally hypoelliptic differential operators

Nils Nilsson
University of Lund, Lund, Sweden

1. Introduction

We are going to consider a differential operator $a(x, D)=\sum a_{\alpha}(x) D^{\alpha}$ in and open connected subset S of R^{n}, where D is the differentiation symbol $(2 \pi i)^{-1}\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right)$ and the summation is made over a finite number of multi-orders $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. We assume that the operator $a(x, D)$ is formally hypoelliptic (FHE) of type P in S, i.e. that the (complex-valued) coefficients a_{α} are in $C^{\infty}(S)$ and that for every $x \in S$ the polynomial (in $\left.\xi \in R^{n}\right) \mid a(x, \xi)=$ $\sum a_{\alpha}(x) \xi^{\alpha}$ is equally strong as the hypoelliptic polynomial P in the sense of Hörmander [4]. We also require that the type polynomial P is not a constant. Moreover, we suppose that $a(x, D)$ is formally self-adjoint in S, i.e. that we have $\sum a_{\alpha}(x) D^{\alpha}=\sum D^{\alpha} \overline{a_{\alpha}(x)}$ there. Then with no loss of generality we may assume that $\operatorname{Re} a(x, \xi) \rightarrow+\infty$ as $|\xi| \rightarrow \infty, \xi \in R^{n}$, for every $x \in S$ (Lemma 3).

Suppose now that A is a self-adjoint realization of $a(x, D)$ in the Hilbert space $L^{2}(S)$ (note that A need not be bounded from below), and let $A=\int_{-\infty}^{\infty} \lambda d E_{\lambda}$ be its spectral resolution, the E_{λ} being orthogonal projections in $L^{2}(S)$, increasing with λ. We shall then prove (Theorem 1) that for every real number λ the projection E_{λ} is given by a kernel e_{λ} in $C^{\infty}(S \times S)$ (e_{λ} is called the spectral function of A) and that, when $\lambda \rightarrow-\infty, e_{\lambda}$ tends exponentially to zero together with its derivatives (with respect to the variables in $S \times S$), uniformly on compact subsets of $S \times S$.

Further, for an arbitrary n-order α we shall investigate the behaviour as $\lambda \rightarrow+\infty$ of the derivative $e_{\lambda}^{(\alpha, \alpha)}(x, y)=D_{x}^{\alpha}\left(-D_{y}\right)^{\alpha} e_{\lambda}(x, y)$ when $x=y \in S$. We shall then compare $e_{\lambda}^{(\alpha, \alpha)}(x, x)$ to the function

$$
e_{x, \lambda}^{(\alpha, \alpha)}(x, y)=\int_{\operatorname{Re} a(x, \xi) \leq 2} \xi^{2 \alpha} \exp (2 \pi i\langle x-y, \xi\rangle) d \xi
$$

