The asymptotic distribution of the eigenvalues of a degenerate elliptic operator

CLAS NORDIN

1. Introduction

Let R be a Riemannian manifold of dimension n > 1 and class C^2 , let $\varphi \in C^2(R)$ be real and such that $\varphi = 0 \Rightarrow \operatorname{grad} \varphi \neq 0$ and such that $\varphi \geq 0$ defines a compact part R_{φ} of R. Let $\sum g_{jk} dx^j dx^k$ be the metric of R and $dV = g^{\frac{1}{2}} dx$ $(g = \det(g_{jk}))$ its volume element. Let $L^2(R_{\varphi})$ be the real Hilbert space on R_{φ} with norm square $\int_{R_{\varphi}} u^2 dV$. Let us interpret the degenerate differential operator

$$arDelta_arphi = -\sum g^{-rac{1}{2}}\partial_j arphi g^{rac{1}{2}} g^{jk} \partial_k, \; \partial_j = \partial/\partial x^j \;\; (g^{jk}) = (g_{jk})^{-1}$$

as the Friedrichs extension associated with the two quadratic forms

$$a(u) = \int\limits_{R_{\varphi}} \varphi \sum g^{jk} \partial_j u \partial_k u dV, \quad b(u) = \int\limits_{R_{\varphi}} u^2 dV$$

and the real space $C^{1}(R_{\varphi})$. According to Baouendi and Goulaouic [1], $A = \Delta_{\varphi}$ is a non-negative selfadjoint operator on $L^{2}(R_{\varphi})$ and $(I + A)^{-1}$ is compact. Let $\{\lambda_{j}\}_{0}^{\infty}$ be the eigenvalues of A associated with a complete set of eigenfunctions and let $N(\lambda)$ be the number of those eigenvalues which are $\leq \lambda$. We are going to give an asymptotic formula for $N(\lambda)$ as $\lambda \to \infty$. Let dv be the volume element on $S = \partial R_{\varphi}$ with respect to the induced metric and let $\partial/\partial v$ be the unit interior derivative on S. Let ω_{n} be the volume of the unit ball in R^{n} and put

$$c_{n-1} = (2\pi)^{1-n} \omega_{n-1} \int_{S} (\partial \varphi / \partial \nu)^{(1-n)/2} d\nu .$$
 (1)

Finally, let