On strong Ditkin sets

SADAHIRO SAEKI

Tokyo Metropolitan University, Tokyo, Japan

Let G be a locally compact abelian group with character group Γ , and let M(G) be the convolution algebra consisting of all bounded regular measures on G. The Fourier transform of a measure μ in M(G) is defined by

$$\hat{\mu}(\gamma) = \int\limits_{G} (x, -\gamma) d\mu(x) \quad (\gamma \in \Gamma) .$$

We shall regard the group algebra $L^{1}(G)$ as a closed ideal in M(G) (see [9, p. 16]). For a given closed subset E of Γ , let us denote by:

$$\begin{split} I(E) &= \{f \in L^1(G) : \hat{f} = 0 \text{ on } E\};\\ I_0(E) &= \{f \in L^1(G) : \hat{f} = 0 \text{ on some neighborhood of } E\};\\ J(E) &= \text{the closure of } I_0(E), \end{split}$$

and, for any measure μ in M(G), define

$$\|\mu\|_E = \sup \{\|f * \mu\| : f \in I_0(E), \|f\| \le 1\}.$$

In other words, $\|\mu\|_E$ is the operator norm of the mapping: $f \to f * \mu$ (from $I_0(E)$ into $L^1(G)$).

Definition 1. (cf. [10] and [8]). We say that a closed subset E of Γ is a Wik set if there exists a family $\{\mu_{\alpha} \in M(G)\}_{\alpha \in A}$ of measures which is directed, in the sense that the index set A is a directed set, such that:

- (a) $\sup \{ \|\mu_{\alpha}\|_{E} : \alpha \in A \} < \infty ;$
- (b) $\hat{\mu}_{\alpha}(\gamma) \xrightarrow[\alpha \in A]{} 0$ if $\gamma \in E$, and $\hat{\mu}_{\alpha}(\gamma) \xrightarrow[\alpha \in A]{} 1$ if $\gamma \in E^{c}$.

Definition 2. (cf. [10]). E is called a strong Ditkin set if there exists a directed family $\{\mu_{\alpha} \in M(G)\}_{\alpha \in \mathcal{A}}$ of measures such that: