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The aim of this paper is to prove the above statement, which is clearly equivalent
to the following:

THEOREM. For every sequence of measurable functions f. with

fff,§K n=1,2...)

there is a subsequence ¢. and a square integrable function g such that the sequence
hn = gn — g s an unconditional convergence sequence.

Recall that a sequence k., is called a convergence sequence, if the series 2 c.hin
is convergent almost everywhere, whenever the sequence ¢, of real numbers satisfies
2'¢; < w. The sequence h, is called an unconditional convergence sequence, if
every rearrangement of %, is a convergence sequence. (E.g. the sequence r, (on
[0, 1]) of Rademacher functions is known to be an unconditional convergence

sequence; while the sequence 4/ 5/; - cos (nx) {on [0, 7]) is a convergence sequence
(Carleson), but — being a complete orthonormal sequence — it is not an
unconditional covergence sequence.)

1 Throughout the paper all functions are measurable functions on some measure space
{X , &, u}. It is clear that it is sufficient to prove our Theorem in case of finite measure, thus
we can take u(X) = 1.

As a rule, we do not indicate
the arguments of functions: writing ¢, f ete. instead of ¢(x), f(z) ete., and u(f > A) instead
of wu({z; flz) > A}),
and the measure: writing /[ @, / ¢, ete. instead of / x P(@)p(de), f x P1(@)pe(@)pi(dz) ete.;
we also say »almost everywhere» instead of »u-almost éverywhere».

oy I:;‘ o will stand for weak convergence in L7,



