Every sequence converging to O weakly in $L_{\scriptscriptstyle 2}$ contains an unconditional convergence sequence $^{\scriptscriptstyle 1}$

János Komlós

Hungarian Academy of Sciences, Budapest, Hungary

The aim of this paper is to prove the above statement, which is clearly equivalent to the following:

Theorem. For every sequence of measurable functions f_n with

$$\int f_n^2 \leq K \ (n=1,2\ldots)$$

there is a subsequence g_n and a square integrable function g such that the sequence $h_n = g_n - g$ is an unconditional convergence sequence.

Recall that a sequence h_n is called a convergence sequence, if the series $\sum c_n h_n$ is convergent almost everywhere, whenever the sequence c_n of real numbers satisfies $\sum c_n^2 < \infty$. The sequence h_n is called an unconditional convergence sequence, if every rearrangement of h_n is a convergence sequence. (E.g. the sequence r_n (on [0, 1]) of Rademacher functions is known to be an unconditional convergence sequence; while the sequence $\sqrt{2/\pi} \cdot \cos(nx)$ (on $[0, \pi]$) is a convergence sequence (Carleson), but — being a complete orthonormal sequence — it is not an unconditional covergence sequence.)

¹ Throughout the paper all functions are measurable functions on some measure space $\{X, \mathcal{S}, \mu\}$. It is clear that it is sufficient to prove our Theorem in case of finite measure, thus we can take $\mu(X) = 1$.

As a rule, we do not indicate

the arguments of functions: writing φ, f etc. instead of $\varphi(x), f(x)$ etc., and $\mu(f > \lambda)$ instead of $\mu(\{x; f(x) > \lambda\})$,

and the measure: writing $\int \varphi$, $\int \varphi_1 \varphi_2$ etc. instead of $\int_X \varphi(x) \mu(dx)$, $\int_X \varphi_1(x) \varphi_2(x) \mu(dx)$ etc.; we also say *almost everywhere* instead of **\mu\$-almost everywhere*.

 $[\]alpha_n \stackrel{\rightharpoonup}{L_n} \alpha$ will stand for weak convergence in L^p .