Interpolation by Lipschitz holomorphic functions*

Boguslaw Tomaszewski

Introduction

Let \mathbf{C}^d be d-dimensional complex space (d>1) with norm $|z| = (|z_1|^2 + ... + |z_d|^2)^{1/2}$ and unit ball $B = \{z \in \mathbf{C}^d : |z| < 1\}$. By μ we shall denote the rotation-invariant, normalized Borel measure on $S = \partial B$ and by C(S) — the space of continuous functions on S. If $f \in C(S)$ has a continuous extension $\tilde{f} : \bar{B} \to \mathbf{C}$, holomorphic on B, then we shall write $f \in A(B)$. We shall denote CA = S - A for $A \subset S$ and by $[z_1, z_2]$ — any shortest path on S joining z_1 with z_2 $(z_1, z_2 \in S)$. Let $\varrho(z_1, z_2)$ be the length of a path $[z_1, z_2]$, let $q(z_1, z_2) = |1 - \langle z_1, z_2 \rangle|$ and let K(z, r) = $\{\xi \in S : q(z, \xi) < r\}$ ($\langle z_1, z_2 \rangle$ be the scalar product of the vectors z_1 and z_2). We say that $f \in \text{Lip } \alpha$, where $0 < \alpha \leq 1$, if $f \in C(S)$ and there exists a constant C such that

for $z, \xi \in S$.

$$|f(z)-f(\xi)| \leq C\varrho(z,\xi)$$

Aleksandrov proved [2] that for every real function $g \in C(S)$ and for every $\varepsilon > 0$ there exist functions $f \in A(B)$ such that $\operatorname{Re} f \leq g$ and $\mu(\{z \in S : \operatorname{Re} f(z) = g(z)\}) \geq 1 - \varepsilon$. Sibony proved [4] that if $f \in A(B) \cap \operatorname{Lip} \alpha$ is a nonconstant function with norm $\|f\|_{\infty} \leq 1$, then $\mu(\{z \in S : |f(z)| = 1\}) = 0$. This theorem was strengthened by Henkin (see [3] sect. 11.4), who obtained the following result: If $f \in A(B) \cap \operatorname{Lip} \alpha$ is a nonconstant function such that $\operatorname{Re} f \leq 0$ and $1 \geq \alpha > 1/2$, then $\mu(\{z \in S : \operatorname{Re} f(z) = 0\}) = 0$. It is still an open problem, if the assumption $1 \geq \alpha > 1/2$ can be replaced by a weaker condition $1 \geq \alpha > b$, where b < 1/2. We shall show that b has to be positive:

Theorem. For every $\varepsilon > 0$ there exists $\alpha > 0$ such that for every real function $g \in \text{Lip } 1$ it is possible to find nonconstant functions $f \in A(B) \cap \text{Lip } \alpha$ such that $\text{Re } f \leq g$ on S, and

$$\mu(\{z \in S: \operatorname{Re} f(z) = g(z)\}) \geq 1 - \varepsilon.$$

^{*} This research was partially supported by National Science Foundation Grant MCS 8100782.