Function theory and *M*-ideals

T. W. Gamelin*, D. E. Marshall*, R. Younis and W. R. Zame*

1. Introduction

This paper deals with some questions that lie at the interface between functional analysis and complex function theory. Let H^{∞} denote the algebra of bounded holomorphic functions on the open unit disk. We may identify a function with its radial boundary values, and thus view H^{∞} as a subalgebra of the algebra L^{∞} of bounded measurable functions on the unit circle. Since H^{∞} is a weak-star closed subspace of L^{∞} , it is easy to see that for every function f in L^{∞} , there is a function g in H^{∞} such that $||f-g|| = \text{distance } (f; H^{\infty})$; i.e., g is a best approximant to ffrom H^{∞} . Sarason [10] asked whether functions in L^{∞} always have best approximants from the space $H^{\infty} + C$ spanned by H^{∞} and the algebra C of continuous functions on the circle.

The space $H^{\infty} + C$ plays a special role in function theory, since Sarason [9] has shown that it is in fact a closed algebra and is contained in every closed subalgebra of L^{∞} that properly contains H^{∞} . The space $H^{\infty} + C$ also plays a special role in operator theory, in the following way. Let L^2 denote the Hilbert space of square integrable functions on the circle, let H^2 denote the closed subspace spanned by the non-negative powers of the function z, and let $(H^2)^{\perp}$ be the closed subspace spanned by the negative powers of z (which is just the orthogonal complement of H^2). We write Q for the orthogonal projection of L^2 onto $(H^2)^{\perp}$. For each $f \in L^{\infty}$, we define a Hankel operator $H_f: H^2 \rightarrow (H^2)^{\perp}$ by $H_f(g) = Q(gf)$. If we use the usual bases for H^2 and $(H^2)^{\perp}$, we may characterize Hankel operators as those whose matrices have constant cross diagonals. It turns out that the distance (in the operator H^2 to $(H^2)^{\perp}$ is the same as the distance from H_f to the space of compact Hankel operators, and the latter coincides with the distance (in the L^{∞} -norm) from the

^{*} Research supported in part by grants from the National Science Foundation.