Wiener's theorem, the Radon—Nikodym theorem, and $m_0(\mathbf{T})$

Russell Lyons

1. Introduction

Let $M(\mathbf{T})$ denote the class of complex Borel measures on the circle $\mathbf{T}=\mathbf{R}/\mathbf{Z}$ and $M_0(\mathbf{T})$ the subclass $\{\mu: \lim_{n\to\infty} \hat{\mu}(n)=0\}$. It was recently proved [5, 6] that $M_0(\mathbf{T})$ is characterized by its class of common null sets. To make this more precise, we use the following notation. For any subclass $\mathscr{C}\subset M(\mathbf{T})$, we let

 $\mathscr{C}^{\perp} = \{E \subset T: E \text{ is a Borel set and } \forall \mu \in \mathscr{C} \mid \mu \mid (E) = 0\}$

be the class of common null sets of \mathscr{C} . Likewise, if \mathscr{E} is a class of Borel subsets of T, we write

$$\mathscr{E}^{\perp} = \{ \mu \in M(\mathbf{T}) \colon \forall E \in \mathscr{E} | \mu | (E) = 0 \}$$

for the class of measures annihilating \mathscr{E} . Then by definition, the class of sets of uniqueness in the wide sense, U_0 , is equal to $M_0(\mathbf{T})^{\perp}$ and [6] shows that $U_0^{\perp} = M_0(\mathbf{T})$. That is, $M_0(\mathbf{T})^{\perp \perp} = M_0(\mathbf{T})$.

Now notice that we can write $M_0(\mathbf{T})$ in another way. Let *PM* be the pseudomeasure topology on $M(\mathbf{T})$: $\|\mu\|_{PM} \equiv \sup_{n \in \mathbf{Z}} |\hat{\mu}(n)|$. If \mathcal{P} denotes the trigonometric polynomials and λ Lebesgue measure on **T**, then $M_0(\mathbf{T})$ is the *PM*-closure of $\mathcal{P}.\lambda$.

If *M* denotes the usual norm topology on $M(\mathbf{T})$, then the *M*-closure of $\mathcal{P}.\sigma$, for any $\sigma \in M(\mathbf{T})$, is $L^1(\sigma) = \{f.\sigma: \int |f| d |\sigma| < \infty\}$. It is clear that $L^1(\sigma)^{\perp} = \{E: |\sigma|(E)=0\}$, whence the Radon—Nikodym theorem is equivalent to the assertion $L^1(\sigma)^{\perp\perp} = L^1(\sigma)$. This leads us to ask if the analogous theorem holds for *PM*. In other words, if $L^{PM}(\sigma)$ denotes the *PM*-closure of $\mathcal{P}.\sigma$, is $L^{PM}(\sigma)^{\perp\perp} = L^{PM}(\sigma)^2$.

Consider now Wiener's theorem [3, p. 42], which says that for all $\mu \in M(\mathbf{T})$,

(1)
$$V(\mu) \equiv \lim_{N \to \infty} \left(\frac{1}{2N+1} \sum_{|n| \le N} |\hat{\mu}(n)|^2 \right)^{1/2}$$