Wiener's theorem, the Radon-Nikodym theorem, and $m_0(\mathbf{T})$

Russell Lyons

1. Introduction

Let $M(T)$ denote the class of complex Borel measures on the circle $T=R/Z$ and $M_0(T)$ the subclass $\{\mu: \lim_{n\to\infty}\hat{\mu}(n)=0\}$. It was recently proved [5, 6] that $M_0(T)$ is characterized by its class of common null sets. To make this more precise, we use the following notation. For any subclass $\mathscr{C}\subset M(T)$, we let

 $\mathscr{C}^{\perp} = \{E \subset T: E \text{ is a Borel set and } \forall \mu \in \mathscr{C} \mid \mu \mid (E) = 0\}$

be the class of common null sets of $\mathscr C$. Likewise, if $\mathscr E$ is a class of Borel subsets of T, we write

$$
\mathscr{E}^{\perp} = \{ \mu \in M(\mathbf{T}) \colon \forall E \in \mathscr{E} | \mu | (E) = 0 \}
$$

for the class of measures annihilating $\mathscr E$. Then by definition, the class of sets of uniqueness in the wide sense, U_0 , is equal to $M_0(T)^{\perp}$ and [6] shows that $U_0^{\perp} = M_0(T)$. That is, $M_0(T)^{\perp \perp} = M_0(T)$.

Now notice that we can write $M_0(T)$ in another way. Let *PM* be the pseudomeasure topology on $M(T)$: $\|\mu\|_{PM} \equiv \sup_{n \in \mathbb{Z}} |\hat{\mu}(n)|$. If \mathscr{P} denotes the trigonometric polynomials and λ Lebesgue measure on T, then $M_0(T)$ is the PM-closure of $\mathcal{P}.\lambda$.

If M denotes the usual norm topology on $M(T)$, then the M-closure of $\mathscr{P}.\sigma$, for any $\sigma \in M(T)$, is $L^1(\sigma) = \{f \cdot \sigma : \int |f| d |\sigma| < \infty \}$. It is clear that $L^1(\sigma) =$ ${E: |\sigma|(E)=0}$, whence the Radon--Nikodym theorem is equivalent to the assertion $L^1(\sigma)^{\perp \perp} = L^1(\sigma)$. This leads us to ask if the analogous theorem holds for *PM.* In other words, if $L^{PM}(\sigma)$ denotes the *PM*-closure of $\mathscr{P}.\sigma$, is $L^{PM}(\sigma)^{\perp \perp} =$ $L^{PM}(\sigma)$?

Consider now Wiener's theorem [3, p. 42], which says that for all $\mu \in M(T)$,

(1)
$$
V(\mu) \equiv \lim_{N \to \infty} \left(\frac{1}{2N+1} \sum_{|n| \le N} |\hat{\mu}(n)|^2 \right)^{1/2}
$$