On the hyperconvexity of holomorphically convex domains in the space C^n

Satoru Watari

§1. Preliminaries

In 1974, Jean-Luc Stehlé has given in his paper [4], such a conjecture¹) that holomorphically convex domain $D = \tilde{D}$ in \mathbb{C}^n is hyperconvex. In 1976, Jean-Louis Ermine has shown in his paper [1] that this conjecture is positive in case of holomorphically convex Reinhardt domains²). But, in general case, it is as yet unknown that this conjecture is positive or not. Evidently, holomorphically convex domain in \mathbb{C}^n can be approximated by an increasing sequence of analytic polyhedra and analytic polyhedra are hyperconvex.

The purpose of this paper is to give such a proof that this conjecture is positive in case of holomorphically convex domains of some type by means of the above approximation.

Definition 1.³⁾ Let D be a relatively compact open set in \mathbb{C}^n . D is said to be hyperconvex if and only if there exists a plurisubharmonic function p(z) defined on a neighbourhood of \overline{D} and negative on D, such that

$$\{z \in D | p(z) \leq c\}$$

is a relatively compact set in D for any c < 0.

The following lemma is easily shown from Definition 1.

¹) Cf. [4], pp. 167, 177 in which D is relatively compact in \mathbb{C}^{n} .

²) Cf. [1], pp. 131-133.

³) Cf. [4], p. 163.