H^{∞} +BUC does not have the best approximation property

Carl Sundberg

§ 1. Introduction

Let L^{∞} denote the usual Lebesgue space of functions on the unit circle [|z|=1] and let H^{∞} denote the bounded analytic functions on the unit disc [|z|<1]. By identifying functions in H^{∞} with their boundary values we may regard H^{∞} as a closed subalgebra of L^{∞} . The closed algebras between H^{∞} and L^{∞} are called *Douglas algebras* and have been studied extensively ([3], [4], [5], [9], [11], [14], [15]). For background and general information on Douglas algebras see [6] and [13].

Let C denote the space of continuous functions on the unit circle. It was shown by Sarason [10] that the linear span $H^{\infty}+C$ is a Douglas algebra. In fact it is the smallest such algebra properly containing H^{∞} ; see [7]. In [12], Sarason asked whether $H^{\infty}+C$ has the *best approximation property*, i.e. whether given any $f \in L^{\infty}$ there existed a $g \in H^{\infty}+C$ such that

$$\|f-g\|_{\infty} = \mathrm{d}\left(f, H^{\infty}+C\right) = \inf_{\overline{\mathsf{def}}} \inf \{\|f-g\|_{\infty} \colon g \in H^{\infty}+C\}.$$

This question was answered affirmatively by Axler, Berg, Jewell, and Shields [1], who then raised the question of whether all Douglas algebras possess this property.

A subsequent paper of Luecking [8] provided a simpler proof of the $H^{\infty}+C$ case using the theory of *M*-ideals. In an unpublished manuscript, Marshall and Zame give a very simple proof of this case and also give many interesting examples of Douglas algebras possessing the best approximation property. Another such example is given by Younis in [16].

In this paper we answer the question for general Douglas algebras negatively, our counterexample being a certain "natural" Douglas algebra. In order to describe and work with this algebra it is convenient to move over to the real line **R** and the upper half plane $\Delta = \{z = x + iy : x, y \in \mathbf{R}, y > 0\}$. Henceforth in this paper L^{∞} and H^{∞} will refer to the corresponding function spaces on **R** and Δ . Let BUC