Positive solutions of elliptic equations in nondivergence form and their adjoints

Patricia Bauman

Introduction

We consider uniformly elliptic operators of the form

(*)
$$L = \sum_{i,j=1}^{n} a_{ij}(X) \cdot D_{X_iX_j}^2 + \sum_{i=1}^{n} b_i(X) \cdot D_{X_i}$$

with real-valued, bounded measurable coefficients defined in \mathbb{R}^n (for $n \ge 2$). The functions, a_{ij} , are assumed to be uniformly continuous in \mathbb{R}^n (with no restriction on the modulus of continuity) and satisfy $a_{ij} = a_{ji}$. Operators of this type correspond to diffusion processes in \mathbb{R}^n (see [16]) and hence will be called diffusion operators.

Our main objective is to prove a comparison theorem (Theorem 2.1) for positive solutions of Lu=0 in a bounded Lipschitz domain, D, in \mathbb{R}^n . The theorem asserts that any two positive solutions of Lu=0 in D which vanish on a portion of the boundary must vanish at the same rate. More precisely, if $Q \in \partial D$, B(8r, Q) is a ball of radius 8r centered at Q, and u_1 and u_2 are positive solutions of Lu=0 in $B(8r, Q) \cap D$ which vanish continuously on ∂D , then

$$\frac{1}{c} \cdot \frac{u_1(X)}{u_1(A_r)} \le \frac{u_2(X)}{u_2(A_r)} \le c \cdot \frac{u_1(X)}{u_2(A_r)}$$

for all X in $B(r, Q) \cap D$. Here, A_r is a point in $B(r, Q) \cap D$ whose distance from ∂D is proportional to r. The constant, c, is independent of Q, r, u_1 , and u_2 .

The comparison theorem was proved for harmonic functions in 1968 by Hunt and Wheeden ([9]). It was extended to solutions of Lu=0 for operators with Hölder continuous coefficients by A. Ancona in 1978 ([2]). A consequence of the comparison theorem is that the representation theorem and Fatou-type results for positive harmonic functions in D (see [9]) extend to positive solutions of Lu=0.