Holomorphic mappings with prescribed Taylor expansions

Leif Abrahamsson

1. Introduction

The letters N and C denote the set of non-negative integers and the set of complex numbers, respectively.

We study the following interpolation problem:

(1) "Let E and F be two complex, locally convex spaces, Ω an open subset of E and $(z_n)_{n \in \mathbb{N}}$ a sequence of distinct points of Ω . Given any sequence of polynomials $(P_n)_{n \in \mathbb{N}}$ (e.g. continuous polynomials) from E to F, under what conditions on E, F and $(z_n)_{n \in \mathbb{N}}$ does there exist a holomorphic mapping f from Ω to F such that the partial Taylor series of f at z_n up to order $N(n) \ge \deg P_n$ is equal to P_n for each $n \in \mathbb{N}$?"

If E and F are one-dimensional, then the answer is that $(z_n)_{n \in \mathbb{N}}$ shall have no accumulation points in Ω . This follows from a combination of Mittag-Leffler's theorem and Weierstrass' theorem.

Weaker versions of (1) have been solved by Y. Hervier [12] and M. Valdivia [24]:

(2) (Y. Hervier [12, Prop. 1, p. 157]). "Let E and F be two complex Banach spaces and let Ω be a domain of holomorphy in E. Suppose that $(z_n)_{n \in \mathbb{N}}$ is a sequence of distinct elements of Ω such that $\lim_{n \to +\infty} |g(z_n)| = +\infty$ for some holomorphic function g on Ω . Then, given any sequence of elements $(u_n)_{n \in \mathbb{N}}$ of F, there exists a holomorphic mapping f from Ω to F such that $f(z_n) = u_n$ for all $n \in \mathbb{N}$ ".

More generally:

(3) (M. Valdivia [24, Thm. 10]). "Let E be a complex, locally convex space whose topology is given by a family of continuous norms, Ω an open subset of E and F a complex Fréchet space. Suppose that $(z_n)_{n \in \mathbb{N}}$ is a sequence of distinct elements of Ω such that $\lim_{n \to +\infty} |g(z_n)| = +\infty$ for some holomorphic function g on Ω . Then,