On the growth of subharmonic functions along paths

John Lewis*, John Rossi ${ }^{\dagger}$ and Allen Weitsman*

1. Introduction

Let \mathbf{C} be the complex plane. Then by a path γ tending to ∞, we shall always mean a continuous mapping of $0 \leqq t<1$ into \mathbf{C} with $\lim _{t \rightarrow 1}|\gamma(t)|=+\infty$. If u is subharmonic in C, put $M(r)=M(r, u)=\max _{|z|=r} u(z), 0<r<\infty$. In [7] Huber proved the following theorem:

Theorem A. Let u be subharmonic in \mathbf{C} and suppose that $\lim _{r \rightarrow \infty} \frac{M(r)}{\log r}=+\infty$. Given $\lambda>0$ there exists a path, $\Gamma(\lambda)$, tending to ∞ with

$$
\int_{\Gamma(\lambda)} e^{-\lambda u}|d z|<+\infty
$$

In Theorem A, $|d z|$ denotes arc length. Also in [10] Talpur proved
Theorem B. Let u be subharmonic in \mathbf{C} with $\lim _{r \rightarrow \infty} \frac{M(r)}{\log r}=+\infty$. Then there exists a path Γ tending to ∞ with

$$
\frac{u(z)}{\log |z|} \rightarrow \infty \quad \text { as } \quad z \rightarrow \infty \quad \text { on } \quad \Gamma .
$$

In this paper, we obtain the following generalization of Theorems A and B, which in fact solves a problem raised by Hayman in [5, p. 12].

Theorem 1. Let u be subharmonic in C and suppose that $\lim _{r \rightarrow \infty} \frac{M(r)}{\log r}=+\infty$.

[^0]
[^0]: \dagger Research carried out at Purdue University while serving as visiting assistant professor. The author gratefully acknowledges the hospitality and support extended him by the Department of Mathematics.

 * Research supported by a National Science Foundation grant.

