On the growth of subharmonic functions along paths

John Lewis*, John Rossi[†] and Allen Weitsman*

1. Introduction

Let C be the complex plane. Then by a path γ tending to ∞ , we shall always mean a continuous mapping of $0 \le t < 1$ into C with $\lim_{t \to 1} |\gamma(t)| = +\infty$. If u is subharmonic in C, put $M(r) = M(r, u) = \max_{|z|=r} u(z), \ 0 < r < \infty$. In [7] Huber proved the following theorem:

Theorem A. Let u be subharmonic in C and suppose that $\lim_{r\to\infty} \frac{M(r)}{\log r} = +\infty$. Given $\lambda > 0$ there exists a path, $\Gamma(\lambda)$, tending to ∞ with

$$\int_{\Gamma(\lambda)} e^{-\lambda u} |dz| < +\infty.$$

In Theorem A, |dz| denotes arc length. Also in [10] Talpur proved

Theorem B. Let u be subharmonic in C with $\lim_{r\to\infty} \frac{M(r)}{\log r} = +\infty$. Then there exists a path Γ tending to ∞ with

$$\frac{u(z)}{\log |z|} \to \infty \quad as \quad z \to \infty \quad on \quad \Gamma.$$

In this paper, we obtain the following generalization of Theorems A and B, which in fact solves a problem raised by Hayman in [5, p. 12].

Theorem 1. Let u be subharmonic in C and suppose that $\lim_{r\to\infty} \frac{M(r)}{\log r} = +\infty$.

† Research carried out at Purdue University while serving as visiting assistant professor. The author gratefully acknowledges the hospitality and support extended him by the Department of Mathematics.

* Research supported by a National Science Foundation grant.