Extension of a result of Benedek, Calderón and Panzone

J. Bourgain

1. Introduction

For X a Banach space and $1 \le p \le \infty$, L_X^p is the usual Lebesgue space.

The theorem of Benedek, Calderón and Panzone [0] asserts that for 1 < p, $r < \infty$, any operator T: $L^p_{tr}(\mathbb{R}^n) \to L^p_{tr}(\mathbb{R}^n)$ of the form $T(f_j) = P.V.$ $(K_j * f_j)$ is bounded, the (K_j) being a sequence of convolution kernels K satisfying the conditions

(a) $\|\hat{K}\|_{\infty} \leq C$

(b)
$$|K(x)| \leq C |x|^{-n}$$

(c)
$$|K(x)-K(x-y)| \le C |y| |x|^{-n-1}$$
 for $|y| < \frac{|x|}{2}$

and where C is a fixed constant.

Our purpose is to show that this theorem remains true if one replaces l^r by any lattice X with the so-called UMD-property (cf. [2]). Let us recall that a Banach space X is UMD provided for $1 martingale difference sequences <math>d = (d_1, d_2, ...)$ in $L_X^p[0, 1]$ are unconditional, i.e. $\|\varepsilon_1 d_1 + \varepsilon_2 d_2 + ...\|_p \leq C_p(X) \|d_1 + d_2 + ...\|_p$ whenever $\varepsilon_1, \varepsilon_2, ...$ are numbers in $\{-1, 1\}$. This property is also equivalent to the boundedness of the Hilberttransform on $L_X^p(\mathbf{R})$ (see [3], [1]) and can be characterized geometrically by the existence of a symmetric, biconvex function ζ on $X \times X$ satisfying $\zeta(x, y) \leq \|x+y\|$ if $\|x\| \leq 1 \leq \|y\|$ and $\zeta(0, 0) > 0$. Let us point out that also for lattices UMD is more restrictive than a condition of r-convexity, s-concavity for some 1 < r, $s < \infty$ (see [9]).

Theorem. Assume X is a UMD space with a normalized unconditional basis (e_j) . Then, for $1 , any operator T: <math>L_X^p(\mathbf{R}^n) \rightarrow L_X^p(\mathbf{R}^n)$ defined as

$$T(\Sigma f_j e_j) = \Sigma T_j(f_j) e_j$$

where the T_j are the singular integral operators considered above, is bounded.