On additive automorphic and rotation automorphic functions

R. Aulaskari and P. Lappan

1. Introduction

Let D denote the unit disc in the complex plane and let Γ be a Fuchsian group. A function W(z) meromorphic in D is said to be *additive automorphic relative to* the Fuchsian group Γ if for each transformation $T \in \Gamma$ there exists a constant A_T such that $W(T(z)) = W(z) + A_T$ for each $z \in D$. The numbers A_T are called *periods* of W(z). A function W(z) is said to be *additive automorphic* if it is additive automorphic relative to some non-trivial Fuchsian group. An analytic function f(z) in D is said to be a *Bloch function* if there exists a constant B_f such that $(1-|z|^2)|f'(z)| \leq B_f$ for each $z \in D$. A function f(z) meromorphic in D is said to be a normal function if there exists a constant N_f such that

$$(1 - |z|^2)|f'(z)|/(1 + |f(z)|^2) \le N_f$$

for each $z \in D$.

Conditions under which an additive automorphic function is a normal function have been studied by Aulaskari [1], [2]. Pommerenke [6] has given an example of an additive automorphic function W(z) such that W(z) is not a Bloch function but $\iint_F |W'(z)|^2 dx dy < \infty$, where F denotes the fundamental region for Γ . In this note the main result is the following theorem.

Theorem 1. There exists an additive automorphic function W(z) relative to a Fuchsian group Γ such that W(z) is not a normal function, W(z) has only imaginary periods, and

$$\iint_F |W'(z)|^2 \, dx \, dy < \infty,$$

where F denotes the fundamental region of Γ .

This theorem will be proved in Section 2, by means of a modification of Pommerenke's method. In Section 3, some important consequences of this theorem will be given.