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I. Introduction 

The purpose of  this paper is to study the question of extendability to the 
whole space of functions defined on sub-domains of R" and satisfying certain 
smoothness conditions, The usual Sobolev spaces of  integral order are defined by 

L~ ([2) = {fE L]or ([2) : DPfE LP ([2), for all I~1 <: k}, 

when [2 is connected, 1 ~p<_oo and k E Z + ;  the derivatives are assumed to exist 
in the sense of distributions on [2. []fllrua) is defined to be 

~o~l#L~ ILD#flIL'<m �9 

By an extension operator for LkP([2) we will mean a bounded linear operator 
p - - ~  p n A: Lk([2 ) Lk(R ), such that A(f)=-f on [2. f2 will be called an extension domain 

for L~ if such an extension operator exists. 
Calderon [4] showed that if 0[2 is locally the graph of a Lipschitz function, then 

[2 is an extension domain for L~, for all l < p <  oo and kEZ +. Stein [14] extended 
this result to include the endpoints p =  1, r and moreover constructed an exten- 
sion operator completely independent of  k (as well as p). The class of known exten- 
sion domains was enlarged by Jones [10], who showed that (5, 6) domains (defined 
below) are also extension domains for Lk', l<=p<_--~ and kEZ +. Furthermore, 
(e, ~o) domains are extension domains for the Dirichlet space of  functions (modulo 
constants) with gradients in L"(R") and for BMO [9]. This class of domains is 
relatively sharp: if [ 2 o R  2 is a bounded finitely connected extension domain for L~, 
then [2 is an (5, ~)  domain. 

[2 is an (5, 6) domain if there are constants eE(0, oo) and 6E(0, ~)  such that 


