The local Π_1 of the complement of a hypersurface with normal crossings in codimension 1 is abelian

Lê Dũng Tráng and Kyoji Saito

Partially supported by NSF Grant MCS77-15 524 (USA), Ecole Polytechnique (France) and Kyoto University (Japan).

0. Introduction

Let $(X, 0) \subset (\mathbb{C}^{n+1}, 0)$ be a germ of reduced analytic hypersurface in $(\mathbb{C}^{n+1}, 0)$ defined by f=0, where $f \in \mathcal{O}_{\mathbb{C}^{n+1}, 0}$ is a germ of analytic function in \mathbb{C}^{n+1} at 0. We shall prove the following:

Main Theorem. Assume that outside an analytic subgerm (Y,0) of (X,0) of dimension at most n-2 the only singularities of (X,0) are normal crossings then the local fundamental group of the complement of (X,0) in $(\mathbb{C}^{n+1},0)$ is abelian.

Remark. Using Milnor fibration theorem ([M] theorems 4.8. and 5.11.) this theorem implies that under its hypothesis the Milnor fiber of (X, 0) has a fundamental group which is free abelian of rank the number of analytic components of X at 0 minus one. In particular, if (X, 0) is analytically irreducible, the Milnor fiber is simply connected. This result extends a result of M. Kato and Y. Matsumoto ([K—M]) which says that if the singular locus of (X, 0) has codimension 2, the Milnor fiber of (X, 0) is simply-connected.

We shall still denote by X and Y representants of (X, 0) and (Y, 0) in a sufficiently small neighbourhood of 0 in \mathbb{C}^{n+1} .

We notice that, if $\varepsilon > 0$ is small enough, the balls B_{ε}^{2n+2} of \mathbb{C}^{n+1} centered at 0 with radius $\varepsilon > 0$:

$$B_{\varepsilon}^{2n+2} := \{z \in \mathbb{C}^{n+1}, \|z\| \leqslant \varepsilon\}$$

— make a fundamental system of good neighbourhoods of 0 in \mathbb{C}^{n+1} with regard to both X and Y in the sense of \mathbb{D} . Prill (cf. [P] definition 1) by using the local conic structure of an analytic set (cf. [B—V] lemma (3.2.)).