Fredholm pseudo-differential operators on weighted Sobolev spaces

M. W. Wong

1. Introduction

Let $m \in (-\infty, \infty)$. Define S^m by

$$S^{m} = \{\sigma \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n}) \colon |D_{x}^{\beta} D_{\xi}^{\alpha} \sigma(x, \xi)| \leq C_{\alpha\beta}(1+|\xi|)^{m-|\alpha|} \}.$$

If $\sigma \in S^m$, then we define the pseudo-differential operator T_{σ} with symbol σ on \mathscr{S} (the Schwartz space) by

$$(T_{\sigma}f)(x) = \int_{\mathbf{R}^n} e^{-2\pi i x \cdot \xi} \sigma(x,\xi) \hat{f}(\xi) d\xi, \quad f \in \mathcal{S}.$$

It can be shown that T_{σ} can be extended to a linear operator from the space \mathscr{G}' of tempered distributions into \mathscr{G}' .

Suppose that $\sigma \in S^0$. Then it is well known that T_{σ} is a bounded linear operator from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$ for 1 . An immediate consequence of this result $is that every <math>T_{\sigma}$ with $\sigma \in S^m$ is a bounded linear operator from $L_{s+m}^p(\mathbb{R}^n)$ into $L_s^p(\mathbb{R}^n)$ for $1 and <math>-\infty < s < \infty$. Here $L_s^p(\mathbb{R}^n)$ stands for the Sobolev space of order s. See Calderón [2] or Stein [19, Chapter 5]. Prompted by the L^p -boundedness result, it is obviously of interest to characterize the nonnegative functions w on \mathbb{R}^n for which every T_{σ} with $\sigma \in S^0$ is a bounded linear operator on $L^p(\mathbb{R}^n, wdx)$ for 1 .

Let $1 . A nonnegative function w is said to be in <math>A_p(\mathbb{R}^n)$ if $w \in L^1_{loc}(\mathbb{R}^n)$ and

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(x) \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} < \infty$$

where the supremum is taken over all cubes Q in \mathbb{R}^n . See Coifman and Fefferman [5] and Muckenhoupt [17] for basic properties of functions in $A_p(\mathbb{R}^n)$. Miller has recently shown in [16] that a necessary and sufficient condition for every T_{σ}